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Hypothesis Testing
(Recap)

v Let X, X, .., X, bei.i.d~QX).

 Given X" = (X{,X,,...,X ), We need to decide which hypothesis is true, Or
equivalently to say

. H=H,ifgX")=1.H=H,if g(X") = 2.



Error Type

A\

« Type 1 error: H = H,, H = H, (False alarm)
« Type 2 error: H = H,, H = H, (Miss detection)
. a=PH=H,|H=H,)

WENGEN AV EYN:N



Question: What is Quantum
version of Hypothesis lesting.



Quantum Hypothesis testing

* The hypothesis testing problem of two quantum
states (Density Operator).



Density Operator

* density matrices, also called density operators, which
conceptually take the role of the state vectors, as they
encode all the (accessible) information about a quantum
mechanical system.



Density Matrix

Properties

Density operator : p = Z p: | pi){p;]

» The expectation value of an observable A in a state, represented by a density
matrix p , is givenby <A > = tr(pA)



Quantum Hypothesis Testing

Problem Description

« Let B(H) be the set of linear operators on H.
S(H)={p € BH)|p=p*20r{p} =1}

 Null hypothesis p € S(H) versus alternative hypothesis ¢ € S(H) .

» Decide which hypothesis is true, p®” or 6®",and the decision is given by a
two-valued quantum measurement {A ,I— A } (A, € B(H®"),0< A <)

. A’f‘@ corresponds acceptance of p®” and I — A, corresponds acceptance of
n
c°".



Types of Errors

a,(A,) = tr(p®"(I — A,))

S.(A) = tr(c®"A)

a,(A,) is the error probability of the acceptance of c®" when p®" is true. (Type 1)

p. (A, ) is the error probability of the converse situation. (Type 2)



Asymmetric v.s. Symmetric case

 Asymmetric case :
Bi(e) = min{B,(A,)|A, € BH®),0<A, < a,A,) <¢}

e Symmetric case:
pékl”l”(p’ q) — mln{p ' an(An) T4 - ﬁn(An) |An S B(H(X)n),() < An < I,P + g = 1}



Weak Converse property
Versus
Strong Converse property



Asymmetric Quantum Hypothesis Testing

Weak converse property

lim supllogﬂ;‘;(e) <—-D(p||o) (1)

11— 00 14}

|
1 D(p||o) < lim inf —log fy(e) (2)
— € n— 00 n

D(p||o) = tr(p(log p — log 0))



Quantum Data Processing Inequality(QDPI)

For any quantum channel & : # , — # 5, and density operator p,c € (K ) :

D(&(p) || &(o)) < D(p||o)



Proof

D(p®"||c®")
> a,(A)log———+ (1 —a,(A,))]og ————— --- (QDPI)
> a,(A,)(log a,(A,) — log(l — f,(A4,)) + (1 — a,(A,))(log(l — a,(A,)) — log f,(A,))
> a,(A,)og(,(A))) + (1 — a,(A,))(og(1l — a,(4,))) — a,(A)log(l — f,(A,)) — (1 —a,A))logp,(A,)
> — H(a,(A))) — a,(Aplog(l = f,(A,)) — (1 —a,(A,))logf,(A,)

AV



Continue

From equation (1):
We have :

log 2

n

|

From equation (2) and (1 — a,(A,) < 1 — €) we have:
log 2

n

1
(1 - E)ZIOgﬁn(An) > — —D(p||o) - (3)

From equation (3) whenn — o0 :

|
D(p||o) < lim inf — log f*(e)
I — € n— 00 n



Asymmetric Quantum Hypothesis Testing

Weak converse property

log 2
n

1

From equation (2), setting §,(A,) < e™™ for r > D(p| | o). Then we will get:
—log2 — nD(p|| o)

1 —a,(A,) <
log f,
2 +nD log2 + nD
g (A)—1> log2 +nD(p|| o) , logZ+n (p|l0)
log 3, —nr

M+1:D(p”0) + 1> 0 (Sincer> D(p||o0)

—nr —r

=> a,(A) >



Asymmetric Quantum Hypothesis Testing

Weak converse property

Theorem: if f.(A,) < e ™™ (r> D(p||0o)),then a, (A ) does not go to zero as n — 0.



Asymmetric Quantum Hypothesis Testing

Strong Converse property

What we want to show:

if B.(A,) < e " (r>D(p||o))then a, (A ) goestooneasn = oo.



Asymmetric Quantum Hypothesis Testing

Strong Converse property

Lemma 1: For any test A, we have :
tr(p®" — ee®"X n) = tr(p®" — e"e®"A )

Theorem 1: For any test A, and any 4 € R, we have:

—noll yl Eigen(spectral)-decomposition:
1 —a(A) <e ™D 4 e"p (A) @
Xn L ®n —
/’tn n
Where Z o
@(A) = max {As — y(s)} X, ;= Z E,; where D, = {j|u, ;> 0}
0<s<1 jeD,

y(s) = log tr(p'*o)



Lemma 1 proof
r((p®" — e"c®M)A ) = 2 y #1(E, iA,)

J
< Z M, jtr(En, J-An)
JED,

S Z //tn,]tr(En,])
JED,

tr((p®" — e”’%@”)Xn’ D,



Convexity of y(s) Pp(2) = max {is — y(s))

0<s<1

let y = p1+S0—S, Then W(S) — lOg tr(u) w(s) = log tr(p1+S6—S)
(s) ‘ )
) = —\Iriu
’ tr(u) ds

itr(u) = i(tr( I+s )
ds ds roe

— l‘l”(i( 145 —S))
N ds re

= tr(p'**c~*(log p — log 0))



Continue the proof
Combine all of them we got:
w'(s) = e Otr(p' 6~ (log p — log 0))
Let A = logp — log o — /()

w'(s) = e VOtr(p'tSAcTSA)

1+ 1+

= eI ((p 2 AcTT)(p 2 AcT2)¥)




Observation

More observation:
(1) w(0) =0

(2) w'(0) = D(p||o)

(3) (1) > 0if A > D(p|]|o)

(4) s* = arg max {As —y(s)} <= y(s*) =4if D(p||o) <4 < y(1)

0<s<1



Proof of Theorem 1

We define two probability distribution: p,, = {pn,j}, q = {qn,j}

Pni= tr(p‘g’”En’j), . = tr(a‘g’”En,j) (Since E,, ; are eigen-decomposition they
are orthogonal to each other (i.e. E, £, , = 0ifj # k))

wy itr(E, ) =p,;—e n/lqn,j

u,; 20 = p,.— e”’lqn,j > 0

D, ={j|l0LVs < 1,6_”’15192’].%;; > 1}



A function f Is said to be matrix convex of order n if for all
n X N Hermitian matrices A and B and for all real numbers

Continue 0<1<1:

J(1I = DA +4B) < (1 = D)A(A) + H(B)
tr(p®”X )= 2 tr(p®”E

JjED,
= D Pu
JED,
Note:
< Zp —nxlsps q
Py " = n] f(u) =u>(0 < s < 1)isaconvex function

—n/ls I+s ,—s
an] d,.; (convex of q)

< e—n/lstr((p®n)l+5(6®n)—3) .o (4)



Detall

tr(p®)! ¥ (0®") ) = tr( ) E, (p®")'VE, (6®) )
J

> ) ir(E, (p®) ' )H(E, (6®")7)
J



Continue

We have :
tr( 0 Xn Xn j) <e —n(As—y(s))
Hence we know that :

tr(p‘g’”Xn’j) < ¢ py taking the maximum

Finally we have:

l —a,(A,) = tr(p®"A,)
< tr(p®" — e”ﬂ(f@”)Xn, it e"tr(c®"A )
< tr(p <X’”Xn, )+ e”’ltr((f@”An)

< e W 4 e™pB (A ) Proved!



Quantum Stein’s lemma

Theorem 2: For any 0 < € < 1 it holds that :

|
lim — log #(¢) = — D(p| | o)

n—oo



Proof of theorem 2

From theorem 1 we know that :
l—e<1—a(A)<e™W 4B (A)
— B (A) > e "1 —e— e W)
Let A = D(p||o+ 6)(6 > 0), From property of @(4) we know that @(4) > 0O in this case

Hence 1 — € — ™Y > () for n sufficiently large.

| |
This implies: —log f*(e) > — A+ —log(l — e — e ()
n n

— lim inf > — D(p||o) —o6for Vo6 > 0

n—0o0



Strong Converse

Theorem 3: For any test A, if

|
lim sup —logp (A) < —r, === (13)

n— Qo0 n

Then

lim sup l log(l —a,(A,)) < — @A) - (14)

n— Qo0 n

Where A* is a real number which satisfies p(A™*) = r — A™*. Moreover, @(A™) is a

represented as:

Y |
/1* — —  sesese 15
A7) £?§{1+Sr 1+SW(S)} 15



Proof of (14)

For all 0 > 0, there exists 1 such that:
B(A) < e 9 Vn > n, from (13).
Put A = A* in theorem 1, we have:
1 —a (A) < e ™) 4 o7 M=4720) \yp >

= 1-a, A) < 2e 1))

|
< lim sup —log(l —a,(A,)) < — @(LA*)+0

n— oo n

Since 0 is arbitrary, (14) has been proved!



Proof of (15)

Suppose y'(0) < r < 2y/'(1) — w(l),

Define: u(r) = @(A*) = max {sA* —y(s)} =r — A*

0<s<1
Using observation (4) A* = y/(s*) we mentioned before:

u(r) = s*y'(s*) — w(s*) where r = (s* + Dy/'(s*) — wi(s™)

ok
Combine both we got u(r) = r— §H).
s* 4+ 1 s* 4+ 1 W)




Clearly if r > 2y/'(1) — w(1):

- 1 1
Continue p(¥) = 7= —p(1) = g(1) = max g(s)
| et’s see the derivative of function: =
if 7 < y/(0):
88 = T s YW p(%) = 0 = g(0) = max g(s
1 <5<
g'(s) = G P (r+w(s) — (1 + s)yw'(s))

We just need to see how function A(s) = r + wi(s) — (1 + $)y/'(s) works.
h'(s) = — (1 + $s)y”"(s) <0 by equation (a), which says that the sign of
2'(s) changes at most once.

Therefore g(s) get maximum value at A(s) = 0 < r = (s + Dy/'(s) — w(s)

So we got u(r) = max g(s)
0<s<1



Strong Converse

Corollary 1: For any test A, if

1
lim sup —logf,(A,) < —D(p||o)

n— Qoo n

Then a,(A,) goes to one exponentially .

Proof: setr = — D(p||o) — 6,V > 0.

We willget 1 —a,(A)) < 2 ~D(pl10)=0=4%) Ky theorem 3.



