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Hypothesis Testing 
(Recap)

• Let  be  ~ .


• 


• 


• Given , We need to decide which hypothesis is true, Or 
equivalently to say 


•  if .  if .

X1, X2, . . , Xn i . i . d Q(X)

H1 : Q = P1

H2 : Q = P2

Xn = (X1, X2, . . . , Xn)

Ĥ = H1 g(Xn) = 1 Ĥ = H2 g(Xn) = 2



Error Type

• Type 1 error :  (False alarm)


• Type 2 error:  (Miss detection)


• 


•

H = H1, Ĥ = H2

H = H2, Ĥ = H1

α = P(Ĥ = H2 |H = H1)

β = P(Ĥ = H1 |H = H2)



Question: What is Quantum 
version of Hypothesis Testing.



Quantum Hypothesis testing

• The hypothesis testing problem of two quantum 
states (Density Operator).



Density Operator

• density matrices, also called density operators, which 
conceptually take the role of the state vectors, as they 
encode all the (accessible) information about a quantum 
mechanical system.



Density Matrix
Properties

• Density operator : 


• The expectation value of an observable  in a state, represented by a density 
matrix  , is given by 

ρ = ∑
i

pi |ρi⟩⟨ρi |

A
ρ < A >ρ = tr(ρA)



Quantum Hypothesis Testing
Problem Description 

• Let  be the set of linear operators on .
.


• Null hypothesis  versus alternative hypothesis  .


• Decide which hypothesis is true,  or ,and the decision is given by a 
two-valued quantum measurement  


•  corresponds acceptance of  and  corresponds acceptance of 
.

B(H) H
S(H) = {ρ ∈ B(H) |ρ = ρ* ≥ 0,tr{ρ} = 1}

ρ ∈ S(H) σ ∈ S(H)

ρ⊗n σ⊗n

{An, I − An} (An ∈ B(H⊗n),0 ≤ An ≤ I)

An ρ⊗n I − An
σ⊗n



Types of Errors 

αn(An) = tr(ρ⊗n(I − An))

βn(An) = tr(σ⊗nAn)

 is the error probability of the acceptance of  when  is true. (Type 1)


 is the error probability of the converse situation. (Type 2)

αn(An) σ⊗n ρ⊗n

βn(An)



Asymmetric v.s. Symmetric case

• Asymmetric case :



• Symmetric case: 

β*n (ϵ) = min{βn(An) |An ∈ B(H⊗n),0 ≤ An ≤ I, αn(An) ≤ ϵ}

p*err(p, q) = min{p ⋅ αn(An) + q ⋅ βn(An) |An ∈ B(H⊗n),0 ≤ An ≤ I, p + q = 1}



Weak Converse property  
           versus  
                      Strong Converse property



Asymmetric Quantum Hypothesis Testing
Weak converse property

         (1)lim
n→∞

sup
1
n

log β*n (ϵ) ≤ − D(ρ | |σ)

     (2)−
1

1 − ϵ
D(ρ | |σ) ≤ lim

n→∞
inf

1
n

log β*n (ϵ)

D(ρ | |σ) = tr(ρ(log ρ − log σ))



Quantum Data Processing Inequality(QDPI)

For any quantum channel , and density operator  :


             


                    

ℰ : ℋA → ℋB ρ, σ ∈ 𝒟(ℋA)

D(ℰ(ρ) | |ℰ(σ)) ≤ D(ρ | |σ)



Proof



  (QDPI)











   (1)

D(ρ⊗n | |σ⊗n)

≥ αn(An)log
αn(An)

1 − βn(An)
+ (1 − αn(An))log

1 − αn(An)
βn(An)

⋯

≥ αn(An)(log αn(An) − log(1 − βn(An)) + (1 − αn(An))(log(1 − αn(An)) − log βn(An))

≥ αn(An)(log(αn(An))) + (1 − αn(An))(log(1 − αn(An))) − αn(An)log(1 − βn(An)) − (1 − αn(An))log βn(An)

≥ − H(αn(An)) − αn(An)log(1 − βn(An)) − (1 − αn(An))log βn(An)

≥ − log2 − (1 − αn(An))log βn(An) ⋯



Continue
From equation (1):


We have :


    (2)


From equation (2) and  we have:


    (3)


From equation (3) when  : 


(1 − αn(An))
1
n

log βn(An) ≥ −
log 2

n
− D(ρ | |σ) ⋯

(1 − αn(An) ≤ 1 − ϵ)

(1 − ϵ)
1
n

log βn(An) ≥ −
log 2

n
− D(ρ | |σ) ⋯

n → ∞

−
1

1 − ϵ
D(ρ | |σ) ≤ lim

n→∞
inf

1
n

log β*n (ϵ)



Asymmetric Quantum Hypothesis Testing
Weak converse property

    (2) (1 − αn(An))
1
n

log βn(An) ≥ −
log 2

n
− D(ρ | |σ) ⋯

From equation (2), setting   for  . Then we will get:








   (Since )


βn(An) ≤ e−nr r > D(ρ | |σ)

1 − αn(An) ≤
−log2 − nD(ρ | |σ)

log βn

⇒ αn(An) − 1 ≥
log2 + nD(ρ | |σ)

log βn
≥

log 2 + nD(ρ | |σ)
−nr

⇒ αn(An) ≥
nD(ρ | |σ)

−nr
+ 1 =

D(ρ | |σ)
−r

+ 1 > 0 r > D(ρ | |σ)



Asymmetric Quantum Hypothesis Testing
Weak converse property

Theorem: if ,then  does not go to zero as .βn(An) ≤ e−nr(r > D(ρ | |σ)) αn(An) n → ∞



Asymmetric Quantum Hypothesis Testing
Strong Converse property

What we want to show: 


if ,then  goes to one as .βn(An) ≤ e−nr(r > D(ρ | |σ)) αn(An) n → ∞



Asymmetric Quantum Hypothesis Testing
Strong Converse property

Lemma 1: For any test , we have :
An

tr(ρ⊗n − enλσ⊗nXn,λ) ≥ tr(ρ⊗n − enλσ⊗nAn)

Theorem 1: For any test  and any , we have:


             


Where


            


           

An λ ∈ R

1 − αn(An) ≤ e−nφ(λ) + enλβn(An)

φ(λ) = max
0≤s≤1

{λs − ψ(s)}

ψ(s) = log tr(ρ1+sσ−s)

Eigen(spectral)-decomposition:





   where 

ρ⊗n − enλσ⊗n = ∑
j

μn,jEn,j

Xn,λ = ∑
j∈Dn

En,j Dn = {j |μn,j > 0}



Lemma 1 proof




                                    


                                    


                                     

tr((ρ⊗n − enλσ⊗n)An) = ∑
j

μn,jtr(En,jAn)

≤ ∑
j∈Dn

μn,jtr(En,jAn)

≤ ∑
j∈Dn

μn,jtr(En,j)

tr((ρ⊗n − enλσ⊗n)Xn,j)



Convexity of ψ(s) 
φ(λ) = max
0≤s≤1

{λs − ψ(s)}

ψ(s) = log tr(ρ1+sσ−s)Let , Then u = ρ1+sσ−s ψ(s) = log tr(u)

ψ′￼(s) =
1

tr(u)
d
ds

(tr(u))




             


              

d
ds

tr(u) =
d
ds

(tr(ρ1+sσ−s))

= tr(
d
ds

(ρ1+sσ−s))

= tr(ρ1+sσ−s(log ρ − log σ))



Continue the proof
Combine all of them we got:


ψ′￼(s) = e−ψ(s)tr(ρ1+sσ−s(log ρ − log σ))

Let A = log ρ − log σ − ψ′￼(s)




         


             (a)

ψ′￼′￼(s) = e−ψ(s)tr(ρ1+sAσ−sA)

= e−ψ(s)tr((ρ1 + s
2 Aσ− s

2 )(ρ1 + s
2 Aσ− s

2 )*)

> 0 ⋯⋯



Observation 

More observation:


(1) 


(2) 


(3)  if 


(4)  if 

ψ(0) = 0

ψ′￼(0) = D(ρ | |σ)

φ(λ) > 0 λ > D(ρ | |σ)

s* = arg max
0≤s≤1

{λs − ψ(s)} ⟺ ψ′￼(s*) = λ D(ρ | |σ) ≤ λ ≤ ψ′￼(1)



Proof of Theorem 1
We define two probability distribution: pn = {pn,j}, q = {qn,j}

    (Since  are eigen-decomposition they


are orthogonal to each other (i.e.  if ))

pn,j = tr(ρ⊗nEn,j), qn,j = tr(σ⊗nEn,j) En,j

En,jEn,k = 0 j ≠ k

μn,jtr(En,j) = pn,j − enλqn,j

  Dn = {j |0 ≤ ∀s ≤ 1,e−nλsps
n,jq

−s
n,j ≥ 1}

μn,j ≥ 0 ⟺ pn,j − enλqn,j ≥ 0



Continue




                  


                  


                     (convex of q)


                    (4)

tr(ρ⊗nXn,j) = ∑
j∈Dn

tr(ρ⊗nEn,j)

= ∑
j∈Dn

pn,j

≤ ∑
j∈Dn

pn,j ⋅ e−nλsps
n,jq

−s
n,j

≤ e−nλs ∑
j

p1+s
n,j q−s

n,j

≤ e−nλstr((ρ⊗n)1+s(σ⊗n)−s) ⋯

Note:


 is a convex function f(u) = u−s(0 ≤ s ≤ 1)

A function f is said to be matrix convex of order n if for all 
n x n Hermitian matrices A and B and for all real numbers 

:


 

0 ≤ λ ≤ 1

f((1 − λ)A + λB) ≤ (1 − λ)f(A) + λf(B)



Detail 




                                 

tr((ρ⊗n)1+s(σ⊗n)−s) = tr(∑
j

En,j(ρ⊗n)1+sEn,j(σ⊗n)−s)

≥ ∑
j

tr(En,j(ρ⊗n)1+s)tr(En,j(σ⊗n)−s)



Continue
We have :





Hence we know that :


 by taking the maximum

tr(ρ⊗nXn,j) ≤ e−n(λs−ψ(s))

tr(ρ⊗nXn,j) ≤ e−nφ(λ)

Finally we have:





                  


                  


                     Proved!

1 − αn(An) = tr(ρ⊗nAn)

≤ tr(ρ⊗n − enλσ⊗n)Xn,j + enλtr(σ⊗nAn)

≤ tr(ρ⊗nXn,j) + enλtr(σ⊗nAn)

≤ e−nφ(λ) + enλβn(An)



Quantum Stein’s lemma

Theorem 2: For any  it holds that :


                              

0 ≤ ϵ < 1

lim
n→∞

1
n

log β*n (ϵ) = − D(ρ | |σ)



Proof of theorem 2
From theorem 1 we know that :


                  


         


         Let , From property of  we know that  in this case


         Hence  for  sufficiently large.


         This  implies :  


           for 

1 − ϵ ≤ 1 − αn(An) ≤ e−nφ(λ) + enλβn(An)

⟹ βn(An) ≥ e−nλ(1 − ϵ − e−nφ(λ))

λ = D(ρ | |σ + δ)(δ > 0) φ(λ) φ(λ) > 0

1 − ϵ − enφ(λ) > 0 n

1
n

log β*n (ϵ) ≥ − λ +
1
n

log(1 − ϵ − e−nφ(λ))

⟹ lim inf
n→∞

≥ − D(ρ | |σ) − δ ∀δ > 0



Strong Converse
Theorem 3: For any test , if 


                           (13)


Then 


                            (14)


Where    is a real number which satisfies . Moreover,  is a 


represented as:


                         .   (15)

An

lim sup
n→∞

1
n

log βn(An) ≤ − r, ⋯⋯

lim sup
n→∞

1
n

log(1 − αn(An)) ≤ − φ(λ*) ⋯⋯

λ* φ(λ*) = r − λ* φ(λ*)

φ(λ*) = max
0≤s≤1

{
s

1 + s
r −

1
1 + s

ψ(s)} ⋯⋯



Proof of (14) 
For all , there exists  such that:


                                from (13).


Put  in theorem 1, we have:


               


       


       


Since  is arbitrary, (14) has been proved!


δ > 0 n0

βn(An) ≤ e−n(r−δ), ∀n ≥ n0

λ = λ*

1 − αn(An) ≤ e−nφ(λ*) + e−n(r−λ*−δ), ∀n ≥ n0

⟺ 1 − αn(An) ≤ 2e−n(φ(λ*)−δ)

⟺ lim sup
n→∞

1
n

log(1 − αn(An)) ≤ − φ(λ*) + δ

δ



Proof of (15)
Suppose ,


Define: 


Using observation (4)  we mentioned before: 


 where 


Combine both we got .

ψ′￼(0) ≤ r ≤ 2ψ′￼(1) − ψ(1)

u(r) = φ(λ*) = max
0≤s≤1

{sλ* − ψ(s)} = r − λ*

λ* = ψ′￼(s*)

u(r) = s*ψ′￼(s*) − ψ(s*) r = (s* + 1)ψ′￼(s*) − ψ(s*)

u(r) =
s*

s* + 1
r −

1
s* + 1

ψ(s*)



Continue
Let’s see the derivative of function:








We just need to see how function  works.


 by equation (a), which says that the sign of 


 changes at most once.


Therefore  get maximum value at 


So we got 

g(s) =
s

s + 1
r −

1
s + 1

ψ(s)

g′￼(s) =
1

(s + 1)2
(r + ψ(s) − (1 + s)ψ′￼(s))

h(s) = r + ψ(s) − (1 + s)ψ′￼(s)

h′￼(s) = − (1 + s)ψ′￼′￼(s) ≤ 0

g′￼(s)

g(s) h(s) = 0 ⟺ r = (s + 1)ψ′￼(s) − ψ(s)

u(r) = max
0≤s≤1

g(s)

Clearly if :





If :


r ≥ 2ψ′￼(1) − ψ(1)

φ(λ*) =
1
2

r −
1
2

ψ(1) = g(1) = max
0≤s≤1

g(s)

r ≤ ψ′￼(0)

φ(λ*) = 0 = g(0) = max
0≤s≤1

g(s)



Strong Converse 
Corollary 1: For any test , if 


                   


Then  goes to one exponentially .

An

lim sup
n→∞

1
n

log βn(An) < − D(ρ | |σ)

αn(An)

Proof: set .


We will get  by theorem 3.

r = − D(ρ | |σ) − δ, ∀δ > 0

1 − αn(An) ≤ 2−n(D(ρ||σ)−δ−λ*)


