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1 Groups and Actions

Definition 1 (Group). A group is a set G with a binary operation (g, h) 7→ gh such that (i)
associativity holds, (ii) there is an identity e ∈ G with eg = ge = g, and (iii) every g ∈ G has an
inverse g−1 with gg−1 = g−1g = e.

Definition 2 (Homomorphism and isomorphism). A map φ : G → H between groups is a
homomorphism if φ(gh) = φ(g)φ(h) for all g, h ∈ G. If, in addition, φ is bijective, it is an
isomorphism.

Definition 3 (Group action (left action)). A (left) action of G on a set X is a map G×X → X,
(g, x) 7→ g · x, such that e · x = x and (gh) · x = g · (h · x). We also write a homomorphism
G→ Sym(X), g 7→ (x 7→ g · x).

Definition 4 (Orbit and stabilizer). For x ∈ X, the orbit is O(x) = {g · x : g ∈ G} and the
stabilizer is Gx = {g ∈ G : g · x = x}.

Remark 1 (Orbit–stabilizer (finite case)). If G is finite, then |G| = |Gx| · |O(x)| for every x ∈ X.

2 Permutations and the symmetric group

Let [n] = {1, . . . , n}.

Definition 5 (Permutation and Sn). A permutation of [n] is a bijection π : [n] → [n]. The set
of all permutations is the symmetric group Sn, with composition (πσ)(i) = π(σ(i)). We use
two-line notation

π =

(
1 2 · · · n

π(1) π(2) · · · π(n)

)
or cycle notation, e.g. π = (1 3 2)(4 5)(6).

Proposition 1 (Basic identities). For π, σ ∈ Sn, π
−1 is the inverse permutation, π π−1 =

π−1π = id, and composition is associative.
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Examples of permutation groups (subgroups of Sn)

Example 1.

π = (1 3 2)(4 5)(6) =

(
1 2 3 4 5 6
3 1 2 5 4 6

)
.

π−1 = (1 2 3)(4 5)(6) =

(
1 2 3 4 5 6
2 3 1 5 4 6

)
.

Example 2.

id =

(
1 2 3 4 5 6
1 2 3 4 5 6

)
.

idSn =

(
1 2 · · · n
1 2 · · · n

)
.

Example 3 (Cyclic subgroup generated by an n-cycle). If c = (1 2 . . . n), then ⟨c⟩ = {e, c, c2, . . . , cn−1} ∼=
Zn.

Example 4 (Dihedral group Dn). Act on the vertices of a regular n-gon labeled 1, . . . , n by
rotations and reflections. As a subgroup of Sn, Dn = ⟨(1 2 . . . n), (2n)(3n− 1) · · · ⟩ has order
2n.

Example 5 (Alternating group An). An = {π ∈ Sn : π is even} is a normal subgroup of index 2.

Example 6 (Young (block) subgroups). For a partition n = m1 + · · · + mr, the subgroup
Sm1 × · · · × Smr ⊆ Sn permutes elements within each block; useful for symmetrizing tensor
indices.

2.1 Permutation representation on n registers

Let H ∼= Cd and consider H⊗n with computational basis {|i1, . . . , in⟩}.

Definition 6 (Unitary permutation operators). For π ∈ Sn, define P (π) by

P (π) |i1, . . . , in⟩ = |iπ−1(1), . . . , iπ−1(n)⟩ . (1)

Proposition 2 (Homomorphism property). P : Sn → U(H⊗n) is a group homomorphism(representation):
P (π)P (σ) = P (πσ), P (id) = 1, and P (π)−1 = P (π−1).

Remark 2. For this property, we will extend to the representation theory in a later document.

Remark 3 (Symmetric subspace). The symmetric subspace is the +1 eigenspace of all P (π), i.e.
vectors invariant under every permutation of the n registers.

3 Conjugacy in groups and in Sn

Definition 7 (Conjugacy and conjugacy class). In a group G, elements g, h are conjugate if
there exists x ∈ G with h = xgx−1. The conjugacy class of g is CG(g) = {xgx−1 : x ∈ G}.

Definition 8 (Cycle type in Sn). Write a permutation π ∈ Sn as a product of disjoint cycles.
If mℓ denotes the number of ℓ-cycles of π (so

∑
ℓ≥1 ℓmℓ = n), then the cycle type of π is the

multiset of lengths
type(π) = 1m12m23m3 · · · ,

equivalently the partition n =
∑

ℓ≥1 ℓmℓ.

Theorem 1 (Conjugacy in Sn = same cycle type). Two permutations π, σ ∈ Sn are conjugate
in Sn if and only if their cycle decompositions have the same cycle type (i.e. the same multiset
of cycle lengths).
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Proof sketch. If σ = τπτ−1, then σ is obtained from π by relabeling symbols via τ ; conjugation
preserves cycle lengths, so cycle types match. Conversely, if π and σ have the same cycle type,
pair each cycle of π with a cycle of σ of the same length and define a bijection τ that maps
elements along corresponding positions in each cycle. Then τπτ−1 = σ.

Example 7 (Same cycle type ⇒ same conjugacy class). In S6 let

π = (1 3 2)(4 5)(6) =

(
1 2 3 4 5 6

3 1 2 5 4 6

)
.

Its cycle type is 31 21 11 (partition 3 + 2 + 1). The permutation

σ = (1 4 2)(3)(5 6) =

(
1 2 3 4 5 6

4 1 3 2 6 5

)

has the same cycle type 31 21 11, hence π and σ are conjugate in S6.

Example 8 (Other basic types). The identity has type 1n. Any transposition (a b) has type
21 1n−2 (so all transpositions are conjugate). A 4-cycle (e.g. (1 2 3 4) in S6) has type 41 12, which
is not the same as 31 21 11, so it lies in a different conjugacy class.

Proposition 3 (Size of a conjugacy class in Sn). Let the cycle type of π ∈ Sn be specified by
integers mℓ ≥ 0 (the number of ℓ-cycles), so that

∑
ℓ≥1 ℓmℓ = n. Then

|CSn(π)| =
n!∏

ℓ≥1 ℓ
mℓ mℓ!

.

Example 9. In S6, the type (3)(2)(1) has m1 = 1, m2 = 1, m3 = 1. The conjugation class size is
6!/(11 1! · 21 1! · 31 1!) = 720/6 = 120.

Unitary representations

Definition 9 (Unitary representation). Let G be a group and V a complex inner-product space.
A unitary representation of G on V is a homomorphism µ : G → U(V ), i.e. µ(gh) = µ(g)µ(h)
for all g, h ∈ G, and each µ(g) is unitary.

Permutation (tensor) representation of Sn. Let H ∼= Cd and consider H⊗n with compu-
tational basis {|i1, . . . , in⟩ : ik ∈ [d]}. For π ∈ Sn define

P (π) |i1, . . . , in⟩ = |iπ−1(1), . . . , iπ−1(n)⟩ .

Then P : Sn → U(H⊗n) is a unitary representation: P (π)P (σ) = P (πσ), P (id) = Id, and
P (π)† = P (π−1) (so P (π) is unitary).

Example 10 ( n = 2 : the SWAP). For π = (1 2), P (π) |i, j⟩ = |j, i⟩; this is the usual swap gate.
Its matrix in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩} is

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
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Symmetric states and the symmetric subspace

Definition 10 (Symmetric vector and subspace). A vector |ψ⟩ ∈ H⊗n is symmetric if P (π) |ψ⟩ =
|ψ⟩ for all π ∈ Sn. The symmetric subspace is

Symn(Cd) = {|ψ⟩ ∈ H⊗n : P (π) |ψ⟩ = |ψ⟩ ∀π ∈ Sn}.

Example 11 (Symmetric vectors). For any |v⟩ ∈ Cd, the n-fold product |v⟩⊗n is symmetric.
For d = 2, n = 2, the vectors |00⟩, |11⟩, and 1√

2
(|01⟩ + |10⟩) are symmetric. The uniform

superposition
∑

x∈[d]n |x⟩ is also symmetric.

Type classes (histograms) and type vectors

Fix d, n. For a string x = (x1, . . . , xn) ∈ [d]n, its type (histogram) is τ(x) = (τ1, . . . , τd) where
τa = #{k : xk = a} and

∑d
a=1 τa = n. Let Tτ = {x ∈ [d]n : τ(x) = τ} and define the type vector

|τ⟩ := 1√
|Tτ |

∑
x∈Tτ

|x⟩ .

Proposition 4. Each |τ⟩ is symmetric; the family {|τ⟩} (over all histograms τ) is orthonormal.

Proof. For any π, P (π) permutes the strings inside Tτ , so P (π) |τ⟩ = |τ⟩. If τ ̸= τ ′, then
Tτ ∩ Tτ ′ = ∅, hence ⟨τ⟩ τ ′ = 0. Normalization is by the 1/

√
|Tτ | factor.

Theorem 2 (Type basis and dimension). The type vectors {|τ⟩} form an orthonormal basis of
Symn(Cd). Consequently,

dimSymn(Cd) = #{histograms τ} =

(
n+ d− 1

d− 1

)
.

Idea. Any symmetric vector must assign equal amplitudes to all strings of the same type
(otherwise some permutation changes the state), so it lies in the span of {|τ⟩}; together with
Proposition 4, these vectors form an ONB. Counting histograms is the stars-and-bars argument.

Span by product states and a Vandermonde argument

Define S := span{|v⟩⊗n : |v⟩ ∈ Cd}. Clearly S ⊆ Symn(Cd). We show S = Symn(Cd) by proving
that each type vector lies in S.

Case d = 2 (explicit). Write types as τi = (n− i, i), i = 0, . . . , n, and |τi⟩ = 1√
(ni)

∑
|x|=i |x⟩,

where |x| counts 1’s. For any z ∈ C,

(|0⟩+ z |1⟩)⊗n =

n∑
i=0

zi

√(
n

i

)
|τi⟩ .

Choose K = n+ 1 distinct complex numbers z1, . . . , zn+1 and consider the system

n+1∑
j=1

αj (|0⟩+ zj |1⟩)⊗n =

√(
n

i⋆

)
|τi⋆⟩ .

This reduces to the linear equations
∑

j αjz
i
j = δi,i⋆ for i = 0, . . . , n, whose coefficient matrix is

the (n+1)× (n+1) Vandermonde V = (z i
j ). Since the zj are distinct, V is invertible; thus every

|τi⟩ is a linear combination of |v⟩⊗n’s, so S contains the type basis.
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General d. This is a high-level understanding of the proof later.A multivariate version uses

(
∑d

a=1 za |a⟩)⊗n and separates coefficients by choosing a finite grid of d-tuples z(j) = (z
(j)
1 , . . . , z

(j)
d )

so that the associated multivariate Vandermonde matrix is invertible; this yields each |τ⟩. Hence
S = Symn(Cd).

Concrete examples ( n = 2, d = 2 )

Type classes and type vectors:

τ = (2, 0) : |τ⟩ = |00⟩ , τ = (0, 2) : |τ⟩ = |11⟩ , τ = (1, 1) : |τ⟩ = 1√
2
(|01⟩+ |10⟩).

Recovering |τ = (1, 1)⟩ from product states:

1

2
(|0⟩+ |1⟩)⊗2 − 1

2
(|0⟩ − |1⟩)⊗2 = 1√

2
(|01⟩+ |10⟩).

Theorem 3 (Product-state span equals the symmetric subspace). Let H ≃ Cd. Then

span
{
|v⟩⊗n : |v⟩ ∈ H

}
= Symn(Cd).

Proof. It is clear that every |v⟩⊗n is invariant under all register permutations, so the left-hand
side is contained in Symn(Cd). To prove the reverse inclusion we show that the standard type
(histogram) basis of Symn(Cd) lies in the span of product states.

Step 1 (set up type vectors). For d = 2 write types as τi = (n− i, i) and define

|τi⟩ =
1√(
n
i

) ∑
x∈{0,1}n
|x|=i

|x⟩ , i = 0, 1, . . . , n.

Then {|τi⟩}ni=0 is an orthonormal basis of Symn(C2). The binomial expansion gives, for any
z ∈ C,

(|0⟩+ z |1⟩)⊗n =
n∑

i=0

zi

√(
n

i

)
|τi⟩ . (2)

Step 2 (Vandermonde isolation for d = 2). Fix i⋆ ∈ {0, . . . , n}. Choose K = n+ 1 distinct
complex numbers z1, . . . , zn+1 and seek coefficients α1, . . . , αn+1 such that

n+1∑
j=1

αj (|0⟩+ zj |1⟩)⊗n = |τi⋆⟩ .

Using (2) this is equivalent to the linear system

n+1∑
j=1

αj z
i
j =


1√(
n
i⋆

) , i = i⋆,

0, i ̸= i⋆,

i = 0, 1, . . . , n.

In matrix form V α = ei⋆/
√(

n
i⋆

)
, where

V =


1 1 · · · 1
z1 z2 · · · zn+1
...

...
. . .

...
zn1 zn2 · · · znn+1


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is the (n+1)× (n+1) Vandermonde matrix. Since the zj are distinct, V is invertible; hence such
α exists and |τi⋆⟩ is a linear combination of product states. As the |τi⟩’s span Symn(C2), we
have equality for d = 2.

Step 3 (general d via a univariate reduction). For d ≥ 2, index types by m =
(m1, . . . ,md) ∈ Nd with |m| :=

∑
ama = n and set

|τm⟩ :=

√∏d
a=1ma!

n!

∑
x∈[d]n

type(x)=m

|x⟩ ,

an orthonormal basis of Symn(Cd). The multinomial theorem yields, for z = (z1, . . . , zd) ∈ Cd,

( d∑
a=1

za |a⟩
)⊗n

=
∑

|m|=n

zm

√
n!∏
ama!

|τm⟩ , zm :=

d∏
a=1

zma
a . (3)

Choose a base B := n + 1 and distinct scalars t1, . . . , tM with M =
(
n+d−1
d−1

)
. Define points

z(j) ∈ Cd by
z(j)a := tB

a−1

j , a = 1, . . . , d.

For |m| = n the monomial evaluates to

(
z(j)
)m

=
d∏

a=1

tmaBa−1

j = t
∑d

a=1 maBa−1

j .

Because 0 ≤ ma ≤ n and the base is B = n+1, the exponent
∑

amaB
a−1 is the base-B encoding

of m; distinct m’s yield distinct exponents. Thus the evaluation matrix with entries
(
z(j)
)m

is a
(rectangular) Vandermonde in the variables tj with distinct exponents, hence has full row rank.

Arguing exactly as in Step 2, we can linearly combine the product states
(∑

a z
(j)
a |a⟩

)⊗n
to

isolate any fixed |τm⟩. Therefore, every type of vector lies in the span of product states, proving
the reverse inclusion.

Definition 11 (Symmetrizer / projector onto the symmetric subspace). Let Symn(Cd) ⊂ (Cd)⊗n

be the symmetric subspace. Define the symmetrizer

Πsym :=
1

n!

∑
π∈Sn

P (π).

Proposition 5 (Uniform pushforward on Sn). If π is uniform on Sn and σ ∈ Sn is fixed, then
πσ is also uniform. Equivalently, for any function f : Sn → C,

Eπ∼Sn f(πσ) = Eπ∼Sn f(π), and Pr[π = τ ] =
1

n!
∀ τ ∈ Sn.

Theorem 4 (Averaging projector). The operator Πsym defined in Definition 11 is the orthogonal
projector onto Symn(Cd). In particular,

Π†
sym = Πsym, Π2

sym = Πsym, Ran(Πsym) = Symn(Cd).

Proof. Hermitian. Since P (π)† = P (π−1) and the map π 7→ π−1 is a bijection of Sn,

Π†
sym =

1

n!

∑
π∈Sn

P (π)† =
1

n!

∑
π∈Sn

P (π−1) =
1

n!

∑
π∈Sn

P (π) = Πsym.
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Idempotent. Using group multiplication and Proposition 5,

Π2
sym =

(
1
n!

∑
π

P (π)
)(

1
n!

∑
σ

P (σ)
)
=

1

(n!)2

∑
π,σ

P (πσ) =
1

n!

∑
τ∈Sn

P (τ) = Πsym,

because for each fixed τ there are exactly n! pairs (π, σ) with πσ = τ (take any σ and set
π = τσ−1).

Since Πsym is Hermitian and idempotent, it is an orthogonal projector onto its range.
Range equals the symmetric subspace. (i) If |ψ⟩ ∈ Symn(Cd), then P (π) |ψ⟩ = |ψ⟩ for

all π; hence Πsym |ψ⟩ = 1
n!

∑
π |ψ⟩ = |ψ⟩. Thus Symn(Cd) ⊆ Ran(Πsym).

(ii) Conversely, for any |ϕ⟩ and any σ ∈ Sn,

P (σ)Πsym |ϕ⟩ = 1

n!

∑
π

P (σπ) |ϕ⟩ = 1

n!

∑
τ

P (τ) |ϕ⟩ = Πsym |ϕ⟩ ,

relabeling τ = σπ. Hence Πsym |ϕ⟩ is invariant under all permutations, so Ran(Πsym) ⊆
Symn(Cd).

Combining (i) and (ii) completes the proof.

Example 12 (n = 2). Here S2 = {e, (1 2)} and P (1 2) = SWAP. Thus

Πsym = 1
2

(
I + SWAP

)
,

which projects onto the span of {|00⟩ , 1√
2
(|01⟩+ |10⟩), |11⟩}.

4 The symmetric subspace and the unitary group action

Definition 12 (Unitary group). U(d) = {U ∈ Cd×d : U †U = UU † = I}.

Proposition 6. U(d) is a group under matrix multiplication (associativity, identity I, and
inverses U †).

Definition 13 (Tensor (diagonal) action of U(d)). For n ≥ 1 and U ∈ U(d) define the unitary
on (Cd)⊗n

Q(U) := U⊗n.

Fact 1 (Representation property). Q : U(d) → U
(
(Cd)⊗n

)
is a unitary representation since

Q(U)Q(V ) = U⊗nV ⊗n = (UV )⊗n = Q(UV ).

Proposition 7 (Invariance of the symmetric subspace). Let Symn(Cd) ⊂ (Cd)⊗n be the sym-
metric subspace. Then Q(U) Symn(Cd) ⊆ Symn(Cd) for every U ∈ U(d).

Proof. By Theorem “product-state span = symmetric subspace”, every |ψ⟩ ∈ Symn(Cd) can
be written as |ψ⟩ =

∑
i αi |vi⟩⊗n. Then Q(U) |ψ⟩ =

∑
i αi(U |vi⟩)⊗n, which is again a linear

combination of n-fold product states, hence symmetric.

Remark 4. The permutation representation P : Sn → U
(
(Cd)⊗n

)
acts trivially on Symn(Cd):

P (π) |ψ⟩ = |ψ⟩ for all π ∈ Sn and |ψ⟩ ∈ Symn(Cd).
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Haar measure and Haar-random vectors

Definition 14 (Haar measure on U(d)). The (normalized) Haar measure µHaar is the unique
probability measure on U(d) that is invariant under left and right multiplication: µHaar(V UW ) =
µHaar(U) for all fixed V,W ∈ U(d).

Fact 2 (Haar pushforward to the sphere). Fix any unit vector |v⟩ ∈ Cd. If U ∼ µHaar, then
U |v⟩ is a Haar-random unit vector (i.e., uniformly distributed on the complex unit sphere).
Conversely, a Haar-random unitary can be obtained by sampling d i.i.d. complex Gaussian
vectors, applying Gram–Schmidt, and stacking them as columns.

Theorem 5 (Haar moment on the symmetric projector). Let |v⟩ be a Haar-random unit vector
in Cd and

M := E
[
|v⟩⟨v|⊗n ].

Then M is a scalar multiple of the symmetrizer Πsym = 1
n!

∑
π∈Sn

P (π), namely

M =
1(

n+d−1
d−1

) Πsym .

Proof. (i) Invariance under U(d). If U ∼ µHaar, then U |v⟩ is Haar-random; hence

U⊗nM U⊗n† = E
[
(U |v⟩⟨v|U †)⊗n

]
=M.

Thus M lies in the commutant of Q(U(d)) = {U⊗n}.
(ii) Support in the symmetric subspace. Each sample |v⟩⟨v|⊗n has range contained in

Symn(Cd); therefore so does M . Hence M acts as zero on the orthogonal complement of
Symn(Cd).

(iii) Proportionality to Πsym. By Schur–Weyl duality (or by the fact that the only operators
on the irreducible U(d)-module Symn(Cd) commuting with all U⊗n are scalars), the restriction
of M to Symn(Cd) is a scalar multiple of the identity there: M = cΠsym for some c > 0.

(iv) Determine c by traces. Since Tr(|v⟩⟨v|⊗n) = 1, we have Tr(M) = 1. Also Tr(Πsym) =

dimSymn(Cd) =
(
n+d−1
d−1

)
. Therefore 1 = Tr(M) = c

(
n+d−1
d−1

)
, giving c =

(
n+d−1
d−1

)−1
.

Example 13 (n = 2). Using Πsym = 1
2 (I + F ) (with F the swap),

E
[
|v⟩⟨v|⊗2 ] = 2

d(d+ 1)
Πsym =

I + F

d(d+ 1)
,

the familiar second-moment identity.

4.1 Toy example: the n = 1 case

Let |v⟩ ∈ Cd be Haar–random on the unit sphere and expand in the computational basis
|v⟩ =

∑d
i=1 vi |i⟩ with

∑
i |vi|2 = 1. Then

E[|v⟩⟨v|] = E

(∑
i

vi |i⟩
)(∑

j

v̄j ⟨j|
) =

∑
i,j

E[viv̄j ] |i⟩⟨j| .

Off–diagonals vanish. For any diagonal phase unitary D = diag(eiθ1 , . . . , eiθd), D |v⟩ is also
Haar–distributed, so

E[viv̄j ] = E[(eiθivi)(e−iθj v̄j)] = ei(θi−θj)E[viv̄j ] ∀ θi, θj .

If i ̸= j this forces E[viv̄j ] = 0.
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Diagonals are all equal and sum to 1. By permutation invariance of the Haar measure,
E[|vi|2] is the same for all i; write E[|vi|2] = α. Taking expectations in

∑
i |vi|2 = 1 yields

1 = E

[
d∑

i=1

|vi|2
]
=

d∑
i=1

E[|vi|2] = dα =⇒ α =
1

d
.

Combining these two facts,

E[|v⟩⟨v|] =
d∑

i=1

1

d
|i⟩⟨i| = 1

d
I .

5 A potential obstruction and irreducibility

5.1 A potential obstruction

Let |ϕ⟩ = |1⟩⊗n and recall

M = EU∼Haar

[
Q(U) |ϕ⟩⟨ϕ| Q(U)†

]
, Q(U) = U⊗n.

Suppose (hypothetically) that in some fixed basis every Q(U) had the same block–diagonal form

Q(U) =
(

Q1(U) 0

0 Q2(U)

)
. Then Q(U) would never mix the two invariant subspaces, and averaging

could not move a vector from one block into the other. In that case M could be at best a
projector onto one block, rather than a multiple of the full symmetrizer Πsym. This motivates
the need to show that no such nontrivial decomposition exists on the symmetric subspace, i.e.
the action is irreducible.

5.2 (Ir)reducible representations and examples

Definition 15 (Reducible / irreducible). A unitary representation (µ, V ) of a group G is
reducible if there is a nontrivial proper subspace 0 ̸= W ⊊ V with µ(g)W ⊆ W for all g ∈ G.
Otherwise it is irreducible. Equivalently, in some basis µ(g) is block diagonal for all g.

Examples. (1) The permutation representation P : Sn → U((Cd)⊗n) is reducible since it
preserves the symmetric subspace Symn(Cd). (2) The tensor action Q(U) = U⊗n on (Cd)⊗n is
also reducible because it preserves Symn(Cd). (3) On Symn(Cd), the permutation action P (π)
is trivial (acts as the identity), hence “extremely” reducible.

5.3 Irreducibility of Q on the symmetric subspace

Theorem 6. Let Q : U(d) → U(Symn(Cd)) be the restricted tensor action Q(U) = U⊗n. Then
Q is irreducible on Symn(Cd).

Proof. We follow the sketch from the notes.
Assume for contradiction that Q is reducible. Then there are nonzero, proper, orthogonal

Q–invariant subspaces X,Y ⊂ Symn(Cd) with

Symn(Cd) = X ⊕ Y, Q(U)X ⊆ X, Q(U)Y ⊆ Y ∀U ∈ U(d).

By the product-state span theorem (proved earlier), the set {|v⟩⊗n : |v⟩ ∈ Cd} spans
Symn(Cd). Hence there exists a family of unit vectors {|vi⟩} and an index set I such that
|vi⟩⊗n ∈ X for all i ∈ I, and (since Y ̸= {0}) there is some j /∈ I with |vj⟩⊗n ∈ Y .

Because U(d) acts transitively on unit vectors, there exists a unitary U ∈ U(d) with
U |vj⟩ = |vi0⟩ for some i0 ∈ I. Then

Q(U) |vj⟩⊗n = (U |vj⟩)⊗n = |vi0⟩
⊗n ∈ X.
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But |vj⟩⊗n ∈ Y and Y is Q–invariant, so Q(U) |vj⟩⊗n ∈ Y as well. Thus |vi0⟩
⊗n ∈ X ∩ Y , a

nonzero vector, contradicting X ⊥ Y and Symn(Cd) = X ⊕ Y .
Therefore no such nontrivial invariant decomposition exists, and Q is irreducible on Symn(Cd).

5.4 Proof of the Haar moment theorem via irreducibility

Recall Theorem 5: for |v⟩ Haar–random, M = E
[
|v⟩⟨v|⊗n ] = (n+d−1

d−1

)−1
Πsym.

Proof (representation–theoretic). For any fixed U ∈ U(d), Haar invariance gives

Q(U)M Q(U)† = E
[
(U |v⟩⟨v|U †)⊗n

]
=M,

so M commutes with every Q(U) and acts trivially on the orthogonal complement of Symn. By
Theorem 6 and Schur’s lemma(which we will show later), M = cΠsym for some c. Taking traces,

1 = Tr(M) = c Tr(Πsym) = c
(
n+d−1
d−1

)
, so c =

(
n+d−1
d−1

)−1
.

6 Pure-state tomography via the Haar POVM

Problem. Given n copies of an unknown pure state |ψ⟩ ∈ Cd, we perform one collective
measurement on |ψ⟩⊗n and output an estimate |ψ̂⟩. Our accuracy metric will be the (squared)
fidelity F := |⟨ψ|ψ̂⟩|2.

Equivalence for pure states. For pure states,

Dtr

(
|ψ⟩⟨ψ|, |ψ̂⟩⟨ψ̂|

)
=

√
1− |⟨ψ|ψ̂⟩|2.

Hence a fidelity target |⟨ψ|ψ̂⟩|2 ≥ 1− ε2 is exactly the trace-distance target Dtr ≤ ε.

Proposition 8 (Expected trace distance). Under the Haar POVM estimator ψ̂ = v,

E
[
Dtr

(
|ψ⟩⟨ψ|, |ψ̂⟩⟨ψ̂|

) ]
≤
√

1− E
[
|⟨ψ|ψ̂⟩|2

]
=

√
d− 1

n+ d
≤
√
d

n
.

(The inequality uses concavity of x 7→
√
1− x and Theorem 8.)

Theorem 7 (Tail bound / error exponent in trace distance). Let F = |⟨ψ|ψ̂⟩|2. Then F ∼
Beta(n+1, d−1), so for any ε ∈ (0, 1),

Pr
[
Dtr ≥ ε

]
= Pr

[
1− F ≥ ε2

]
= I 1−ε2(n+1, d−1) ≤ (n+d−1)d−2

(d−2)! (n+1)
e−(n+1)ε2 .

Thus the error probability decays at least like poly(n, d) e−(n+1)ε2 with exponent (n+1)ε2.

Proposition 9 (Samples for trace-distance target with tail ≤ δ). To ensure Pr[Dtr ≥ ε] ≤ δ, it
suffices to take

n ≥
(d− 2) log(n+ d− 1) + log

(
1

(d−2)! δ

)
ε2

− 1 = O
(d+ log(1/δ)

ε2

)
.
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The Haar POVM on Symn(Cd)

By Theorem 5, for Haar–random |v⟩, E[|v⟩⟨v|⊗n] =
(
n+d−1
d−1

)−1
Πsym. This implies that the

operator density

E(dv) =

(
n+ d− 1

d− 1

)
|v⟩⟨v|⊗n dν(v), (4)

with dν the normalized Haar measure on the unit sphere of Cd, forms a valid POVM on Symn(Cd).
For input |ψ⟩⊗n the outcome law is

Pr[dv | ψ] =

(
n+ d− 1

d− 1

)
|⟨v⟩ψ|2n dν(v). (5)

We use the simple estimator |ψ̂⟩ := |v⟩ (the outcome direction).

Proposition 10. For Haar–random |v⟩ and any fixed |ψ⟩,

EHaar

[
⟨ψ|ψ̂⟩2m

]
=

(
m+ d− 1

d− 1

)−1

(m ∈ N).

Proof. By Theorem 5, E[|v⟩⟨v|⊗m] =
(
m+d−1
d−1

)−1
Πsym. Taking the matrix element on |ψ⟩⊗m

gives the claim since Πsym |ψ⟩⊗m = |ψ⟩⊗m.

Theorem 8 (Expected fidelity). If we measure |ψ⟩⊗n with the Haar POVM (4) and output
|ψ̂⟩ = |v⟩, then

E
[
⟨ψ|ψ̂⟩2

]
=
n+ 1

n+ d
= 1− d− 1

n+ d
.

Proof. From (5),

E[⟨ψ|ψ̂⟩2] =
(
n+ d− 1

d− 1

)∫
|⟨ψ⟩ v|2(n+1) dν(v) =

(
n+ d− 1

d− 1

)(
n+ d

d− 1

)−1

,

using Lemma 10 with m = n+ 1. The ratio simplifies to (n+ 1)/(n+ d).

Full distribution and an error exponent

Let F := |⟨ψ⟩ ψ̂|2. Combining (5) with the well-known fact that T := |⟨v⟩ψ|2 is Beta(1, d−1)
under Haar measure, we find

F ∼ Beta
(
n+1, d−1

)
with density fF (t) =

tn(1− t)d−2

B(n+ 1, d− 1)
(t ∈ [0, 1]),

where B is the beta function. In particular, for any ε ∈ (0, 1),

Pr
[
1− F ≥ ε2

]
= I 1−ε2(n+1, d−1), (6)

the regularized incomplete beta.
A convenient explicit upper bound (polynomial pre-factor with an exponential rate) is

Pr
[
1− F ≥ ε2

]
≤ 1

(n+ 1)B(n+1, d−1)
(1− ε2)n+1 ≤ (n+ d− 1)d−2

(d− 2)! (n+ 1)
e−(n+1)ε2 . (7)

The first inequality integrates the density on [0, 1 − ε2] and the second uses (1 − x) ≤ e−x

and 1/B(n+1, d−1) ≤ (n+d−1)d−2

(d−2)! . Thus, the error exponent is at least (n + 1)ε2 up to a
dimension–dependent polynomial pre-factor.
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Why Beta, not just “a concentration bound”? Let T = |⟨v|ψ⟩|2. For v ∼ Haar on Cd,

T ∼ Beta(1, d− 1),

because |v1|2 is the ratio of two independent Γ variables (Dirichlet on the sphere). Under the
Haar POVM, the outcome density is tilted by Tn [Eq. (5)], so the posterior law of F := |⟨ψ̂|ψ⟩|2
is

F ∼ Beta(n+ 1, d− 1).

This one-dimensional reduction has three advantages:

1. Exact quantities. We get E[F ] =
n+ 1

n+ d
and, for any m, E[F m] =

(
m+d−1
d−1

)−1
exactly,

and the tail is the regularized incomplete beta:

Pr[1− F ≥ ε2] = I 1−ε2(n+ 1, d− 1).

2. Sharp, dimension-aware tails. From the Beta form,

Pr[1− F ≥ ε2] =
1

B(n+ 1, d− 1)

∫ 1−ε2

0
tn(1− t)d−2 dt ≤ (1− ε2)n+1

B(n+ 1, d− 1)
,

which yields the explicit error exponent e−(n+1)ε2 up to a polynomial pre-factor in (n+ d)
[cf. Eq. (7)]. This captures the correct n–vs–d dependence with the best constants you
can hope for from this route.

3. No independence assumptions. Standard tools like Hoeffding/Bernstein apply to sums
of i.i.d. variables; here F is a single draw whose density already encodes n (via tn). Forcing
a generic concentration argument either does not apply directly or gives looser bounds.

Proposition 11. [Sample complexity with tail ≤ δ] For any δ ∈ (0, 1), it suffices to take

n ≥
(d− 2) log(n+ d− 1) + log

(
1

(d−2)! δ

)
ε2

− 1

to guarantee Pr[ 1− F ≥ ε2 ] ≤ δ. In coarse scaling, n = O
(
(d+ log(1/δ))/ε2

)
.

7 Single-copy tomography with a Haar-random basis

Definition 16 (Haar-random basis). If U ∈ U(d) is Haar-random and {|1⟩ , . . . , |d⟩} is a fixed
orthonormal basis, then { |ui⟩ := U |i⟩ }di=1 is a Haar-random basis.

Algorithm (incomplete single-copy tomography).

1. Draw a Haar-random basis {|u1⟩ , . . . , |ud⟩}.

2. Measure ρ in this basis; let the outcome be |u⟩.

3. Output the estimator
ρ̂ := (d+1) |u⟩⟨u| − I.
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Haar-basis measurement equals the uniform POVM

[Symmetry of outcomes in a Haar basis] For a Haar-random basis {|ui⟩} and any state ρ,
Pr[outcome = |u1⟩] = · · · = Pr[outcome = |ud⟩].

[Outcome density] Let |u⟩ be any unit vector. Then

Pr[outcome ∈ dν(u) around |u⟩] = d Tr
[
|u⟩⟨u| ρ

]
dν(u),

where dν is the normalized Haar measure on the unit sphere of Cd.

Definition 17 (Uniform POVM). The uniform POVM on Cd has operator density

E(du) = d |u⟩⟨u| dν(u) (so

∫
E(du) = I).

Performing the Haar-basis measurement is equivalent to applying this POVM.

Unbiased single-copy estimator

Write Q(U) = U⊗2, F for SWAP, and Πsym,2 = 1
2(I + F ). Using Theorem 5 with n = 2,∫

|u⟩⟨u|⊗2 dν(u) =
2

d(d+ 1)
Πsym,2. Then

E[|u⟩⟨u|] =
∫

|u⟩⟨u| Pr[outcome ∈ du] = d

∫
|u⟩⟨u| Tr

[
|u⟩⟨u| ρ

]
dν(u)

= d TrB

[(∫
|u⟩⟨u|⊗2 dν(u)

)
(I ⊗ ρ)

]
=

2

d+ 1
TrB

[
Πsym,2(I ⊗ ρ)

]
=

1

d+ 1
TrB

[
(I + F )(I ⊗ ρ)

]
=

1

d+ 1
(I + ρ).

Hence:

Theorem 9 (Unbiasedness). With the uniform POVM and estimator ρ̂ = (d+1) |u⟩⟨u| − I,

E[ρ̂] = ρ.

Second moment and a variance bound

For any outcome |u⟩, in a basis with |u⟩ first, the matrix of ρ̂ is diag(d, −1, . . . ,−1). Thus

Tr(ρ̂ 2) = d2 + (d− 1) · 1 = d2 + d− 1 (independent of |u⟩ ).

Using E[ρ̂] = ρ,

E
[
∥ρ̂− ρ∥22

]
= E

[
Tr(ρ̂ 2)− 2Tr(ρ̂ρ) + Tr(ρ2)

]
= E[Tr(ρ̂ 2)]− Tr(ρ2) ≤ d2 + d− 1.

Standard unentangled tomography (averaging n copies)

Run the single-copy procedure independently on n copies of ρ, obtaining ρ̂1, . . . , ρ̂n, and output
ρ := 1

n

∑n
k=1 ρ̂k. Then

E
[
∥ρ− ρ∥22

]
=

1

n2

n∑
k=1

E
[
∥ρ̂k − ρ∥22

]
≤ d2 + d− 1

n
.

Using ∥A∥1 ≤
√
rank(A) ∥A∥2 ≤

√
d ∥A∥2 gives the trace-distance guarantee

E
[
Dtr(ρ, ρ)

]
=

1

2
E[∥ρ− ρ∥1] ≤

1

2

√
d
(
E∥ρ− ρ∥22

)1/2 ≤√d3 + d2 − d

4n
.

Hence n = Θ
(
d3/ε2

)
samples suffice to achieve E[Dtr(ρ, ρ)] ≤ ε. (With independence, standard

scalar concentration upgrades this to n = O
(
(d3 + log(1/δ))/ε2

)
for tail ≤ δ.)
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