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1 Groups and Actions

Definition 1 (Group). A group is a set G with a binary operation (g, h) — gh such that (i)
associativity holds, (ii) there is an identity e € G with eg = ge = g, and (iii) every g € G has an

inverse g~ with gg~! = g7 lg =e.

Definition 2 (Homomorphism and isomorphism). A map ¢ : G — H between groups is a
homomorphism it p(gh) = ¢(g)¢(h) for all g,h € G. If, in addition, ¢ is bijective, it is an
isomorphism.

Definition 3 (Group action (left action)). A (left) action of G on a set X is a map G x X — X,
(9,x) — g -z, such that e-x = x and (gh) - = g (h - ). We also write a homomorphism
G— Sym(X),g— (x+—g-x).

Definition 4 (Orbit and stabilizer). For = € X, the orbit is O(z) = {¢g-x : ¢ € G} and the
stabilizer is G, ={g € G : g-x = x}.

Remark 1 (Orbit-stabilizer (finite case)). If G is finite, then |G| = |G| - |O(z)] for every x € X.

2 Permutations and the symmetric group
Let [n] ={1,...,n}.

Definition 5 (Permutation and S,). A permutation of [n] is a bijection 7 : [n] — [n]. The set
of all permutations is the symmetric group Sy, with composition (7o)(i) = (o (i)). We use
two-line notation

= 1 i g m=(132)(4 .
T <7r(1) (2) - 7r(n)> or cycle notation, e.g. m = (132)(45)(6)
Proposition 1 (Basic identities). For m,0 € S,, 7! is the inverse permutation, Tn~1 =

7~ m =1id, and composition is associative.



Examples of permutation groups (subgroups of S,,)

Example 1.
1 23456
™ = (132)(45)(6) = <3 I 25 4 6>'
) 1 23 45 6
1 = (123)(45)(6) = <2 31 5 4 6>.
Example 2.

Ezample 3 (Cyclic subgroup generated by an n-cycle). If c = (12 ... n), then (c) = {e,c,c?,...,c" 1} =
Loy,

Ezample 4 (Dihedral group D,). Act on the vertices of a regular n-gon labeled 1,...,n by
rotations and reflections. As a subgroup of S, D, = ((12 ... n), (2n)(3n —1)---) has order
2n.

Ezample 5 (Alternating group A,,). A, = {m € S,, : 7 is even} is a normal subgroup of index 2.

Ezample 6 (Young (block) subgroups). For a partition n = my + --- + m,, the subgroup
Sy X -+ X S, € S, permutes elements within each block; useful for symmetrizing tensor
indices.

2.1 Permutation representation on n registers

Let H = C¢ and consider H®" with computational basis {|i1,...,in)}.

Definition 6 (Unitary permutation operators). For m € S,,, define P(7) by

P(?T)|i1,...,in> = ‘iﬂ.—l(l),...,iﬂ.—l(n)>. (1)
Proposition 2 (Homomorphism property). P : S, — U(H®") is a group homomorphism (representation):
P(m)P(0) = P(no), P(id) = 1, and P(r)~! = P(x~1).
Remark 2. For this property, we will extend to the representation theory in a later document.

Remark 3 (Symmetric subspace). The symmetric subspace is the +1 eigenspace of all P(7), i.e.
vectors invariant under every permutation of the n registers.

3 Conjugacy in groups and in S5,

Definition 7 (Conjugacy and conjugacy class). In a group G, elements g, h are conjugate if
there exists € G with h = zgr~!. The conjugacy class of g is Ca(g) = {rgx™! : x € G}.

Definition 8 (Cycle type in S,,). Write a permutation 7 € S,, as a product of disjoint cycles.
If my denotes the number of ¢-cycles of 7w (so Y ,~; £my = n), then the cycle type of 7 is the
multiset of lengths -

type(m) = 1m12m23Mms ...

equivalently the partition n =) ,., £my.

Theorem 1 (Conjugacy in S,, = same cycle type). Two permutations 7,0 € S, are conjugate
in Sy, if and only if their cycle decompositions have the same cycle type (i.e. the same multiset
of cycle lengths).



Proof sketch. If o = Twr~1, then o is obtained from 7 by relabeling symbols via 7; conjugation
preserves cycle lengths, so cycle types match. Conversely, if 7 and ¢ have the same cycle type,
pair each cycle of m with a cycle of o of the same length and define a bijection 7 that maps
elements along corresponding positions in each cycle. Then 777! = 0. ]

Ezample 7 (Same cycle type = same conjugacy class). In Sg let

ﬂ:(132)(45)(6):<1 2345 6).

31 25 46

Its cycle type is 3! 2! 1! (partition 3 + 2 + 1). The permutation

41 3 2 6 5

02(142)(3)(56):<1 2840 6)

has the same cycle type 3! 2! 1!, hence m and ¢ are conjugate in Sg.

Ezample 8 (Other basic types). The identity has type 1™. Any transposition (ab) has type
211772 (s0 all transpositions are conjugate). A 4-cycle (e.g. (1234) in Sg) has type 4! 12, which
is not the same as 3' 2! 11, so it lies in a different conjugacy class.

Proposition 3 (Size of a conjugacy class in S,,). Let the cycle type of € S,, be specified by
integers my > 0 (the number of £-cycles), so that 3,1 €me=n. Then

n!

Cs,(m)| = =—F7—.
|Cs,, ()] [Tor 07 gl

Ezample 9. In Sg, the type (3)(2)(1) has m; = 1, my = 1, mg = 1. The conjugation class size is
6!/(1t11- 211131 11) = 720/6 = 120.

Unitary representations

Definition 9 (Unitary representation). Let G be a group and V' a complex inner-product space.
A unitary representation of G on V is a homomorphism p : G — U(V), i.e. u(gh) = u(g)u(h)
for all g, h € G, and each pu(g) is unitary.

Permutation (tensor) representation of S,. Let H = C? and consider H®" with compu-
tational basis {|i1,...,i,) : ix € [d]}. For m € S,, define
P(Tl') |i1, NP ,in> = ‘Z.ﬂfl(l), “oey Z‘ﬂ,fl(n)> .

Then P : S, — U(H®") is a unitary representation: P(m)P(c) = P(ro), P(id) = Id, and
P(m)f = P(r~Y) (so P(r) is unitary).

Ezample 10 (n =2 : the SWAP). For 7 = (12), P(n)|i,j) = |7,4); this is the usual SWAP gate.
Its matrix in the basis {|00),]01),]10),|11)} is

SWAP =

o O O
O = O O
O O = O
_ o O O



Symmetric states and the symmetric subspace

Definition 10 (Symmetric vector and subspace). A vector 1)) € H®" is symmetric if P(r) 1) =
|¢) for all m € S,,. The symmetric subspace is

Sym™(C?) = {|y) € H®" : P(m) |¢) = [y) Vr € Sp}.

Ezample 11 (Symmetric vectors). For any |v) 6 C?, the n-fold product [v)®" is symmetric.
For d = 2, n = 2, the vectors |00), [11), and (|01> + |10)) are symmetric. The uniform

superposition .y [2) is also symmetric.

Type classes (histograms) and type vectors

Fix d,n. For a string © = (x1,...,zy) € [d]", its type (histogram) is T(x) = (11,...,7q) where
Ta=#{k:xp=a}and 3% 7, = n. Let T, = {z € [d]" : 7(z) = 7} and define the type vector

7) = V\Tx; )

Proposition 4. Fach |T) is symmetric; the family {|T)} (over all histograms 7) is orthonormal.

Proof. For any m, P(m) permutes the strings inside T, so P(w)|r) = |7). If 7 # 7/, then
T, NTy = &, hence () 7" = 0. Normalization is by the 1/1/|T;| factor. O

Theorem 2 (Type basis and dimension). The type vectors {|T)} form an orthonormal basis of
Sym™(C%). Consequently,

—1
dim Sym"(C%) = #{histograms 7} = <n +d )

d—1

Idea. Any symmetric vector must assign equal amplitudes to all strings of the same type
(otherwise some permutation changes the state), so it lies in the span of {|7)}; together with
Proposition {4} these vectors form an ONB. Counting histograms is the stars-and-bars argument.

O

Span by product states and a Vandermonde argument

Define S := span{|v)®" : |v) € C¢}. Clearly S C Sym"™(C%). We show S = Sym™(C?) by proving
that each type vector lies in S.

Case d =2 (explicit). Write types as 7, = (n —4,1), i =0, ...

n, and |1;) = —A— _ |z,
s by d’ > \/@Z|m|71|>

where |x| counts 1’s. For any z € C,

(J0) + 2 [1))®" = 1/ ‘TZ .

Choose K = n + 1 distinct complex numbers z1, ..., 2,41 and consider the system
n+1
n
> 50+ 1) () 1.
This reduces to the linear equations Z oz]z = 0,4+ for i = 0,...,n, whose coefficient matrix is
the (n+1) x (n+1) Vandermonde V = ( !). Since the z; are dlstlnct V is invertible; thus every

>®n7

|7;) is a linear combination of |v)*™’s, so S contains the type basis.



General d. This is a high-level understanding of the proof later.A multivariate version uses
(ZZ:1 Zq |a))®" and separates coefficients by choosing a finite grid of d-tuples zU) = (zgj ), cee zc(l] ))
so that the associated multivariate Vandermonde matrix is invertible; this yields each |7). Hence

S = Sym™(C?).

Concrete examples (n=2,d=2)
Type classes and type vectors:

=(2,0): |r) =00), T=(0,2): |) =11), r=(1,1): |1) = (|01> + [10)).

%\

Recovering |7 = (1,1)) from product states:

MO = ~

1
®2 _ — _ ®2 _ 1
(10) + 1) = 5 (10) = [1))™* = (101) +[10)).
Theorem 3 (Product-state span equals the symmetric subspace). Let H ~ C%. Then
span{ [v)*" : [v) e H} = Sym™(C%).

Proof. Tt is clear that every ]1))@" is invariant under all register permutations, so the left-hand
side is contained in Sym™(C?). To prove the reverse inclusion we show that the standard type
(histogram,) basis of Sym™(C?) lies in the span of product states.

Step 1 (set up type vectors). For d = 2 write types as 7; = (n — i,4) and define

\n->:L YooJa)y,  i=01,....n
(7) acfonyr

|z|=t

Then {|7;)}", is an orthonormal basis of Sym™(C?). The binomial expansion gives, for any

z€C,
(10) + 2 [1))*" = \/ \Tz : (2)

Step 2 (Vandermonde isolation for d = 2). Fix i* € {0,...,n}. Choose K = n + 1 distinct

complex numbers z1,..., 2,41 and seek coefficients a7, ..., an41 such that
n+1
D i ([0) + 2 [1)%" = |7+) -
j=1

Using this is equivalent to the linear system

1 .
n+1 , =1,
i n .
g ajz; = (z*) 1=0,1,...,n.
i—1 . .
J 0, 1 #£ 0",
In matrix form Va = ¢+ /4/(]:), where
1 1 1
21 2y o Zngd
V=|. :
n n n
1 F2 T Zng



is the (n+1) x (n+1) Vandermonde matrix. Since the z; are distinct, V' is invertible; hence such
« exists and |7;+) is a linear combination of product states. As the |7;)’s span Sym™(C?), we
have equality for d = 2.

Step 3 (general d via a univariate reduction). For d > 2, index types by m =
(m1,...,mg) € N with |m| := 3" m, = n and set

d
i 1= ¢ o=t el 5~

n!
z€[d]™
type(z)=m

an orthonormal basis of Sym™(C¢%). The multinomial theorem yields, for z = (21,...,2q4) € C%,

d Xn n' d
(X)) = 30 oy [ I 2= T )

a=1 |m|:n a a a=1
Choose a base B := n + 1 and distinct scalars tq,...,ty with M = (":ﬁ;l). Define points

20) € ¢ by ' )
zéj) = t]-Bk , a=1,...,d.

For |m| = n the monomial evaluates to

1 d a—1 d Bafl
(Z(]))m — H tjmaB — tjz:azl Mq )

a=1

Because 0 < m, < n and the base is B = n+1, the exponent ) me B! is the base-B encoding
of m; distinct m’s yield distinct exponents. Thus the evaluation matrix with entries (z(j))m is a
(rectangular) Vandermonde in the variables t; with distinct exponents, hence has full row rank.

Arguing exactly as in Step 2, we can linearly combine the product states (Z a zC(Lj ) |a>)®n to
isolate any fixed |7;,). Therefore, every type of vector lies in the span of product states, proving
the reverse inclusion. O

Definition 11 (Symmetrizer / projector onto the symmetric subspace). Let Sym™(C?) C (C%)®"
be the symmetric subspace. Define the symmetrizer

1
Hgym = ] Z P(r).
’ 7T€Sn

Proposition 5 (Uniform pushforward on S,). If m is uniform on S, and o € S,, is fized, then
wo is also uniform. Equivalently, for any function f : S, — C,

Ervs, f(ro) = Equs, f(7), and Prir =7] = % V71eobs,.

Theorem 4 (Averaging projector). The operator Ilsym defined in Definition 11 is the orthogonal
projector onto Sym™(C%). In particular,

M = Mgm, M2, =gm,  Ran(lgym) = Sym™(CY).

sym sym

Proof. Hermitian. Since P(m)" = P(7~!) and the map 7 + 7! is a bijection of S,,,

H;rym _ % Z P(?T)T — % Z P(Tr*l) = % Z P(m) = Hsym.

’ 7T€Sn 7r€5n 7T€Sn



Idempotent. Using group multiplication and Proposition 5,

= (3 30 P0) (3 30 P0)) = (s 2 Plwo) = 1 3 P =T,

TESn

because for each fixed 7 there are exactly n! pairs (7, 0) with 7o = 7 (take any o and set
7 =rT0"1).

Since Ilgyy, is Hermitian and idempotent, it is an orthogonal projector onto its range.

Range equals the symmetric subspace. (i) If [¢/) € Sym™(C?), then P(r) ) = |¢) for
all m; hence Ilgym [0) = £ > |1) = [¢). Thus Sym™(C%) C Ran(Ilsym).

(ii) Conversely, for any |¢) and any o € Sy,

P(0) sym |¢) = ZPUW ) o) = ,Z = Hsym |9) ,

relabeling 7 = om. Hence Il |¢) is invariant under all permutations, so Ran(Ilgym) C
Sym"(C%).
Combining (i) and (ii) completes the proof. O

Ezample 12 (n = 2). Here So = {e,(12)} and P(12) = SWAP. Thus
Hgym = 5 (I + SWAP),

which projects onto the span of {|00), %(]01) +[10)), [11)}.

4 The symmetric subspace and the unitary group action
Definition 12 (Unitary group). U(d) = {U € C¥™*¢ . U'U = UUT = I}.

Proposition 6. U(d) is a group under matrix multiplication (associativity, identity I, and
inverses UT).

Definition 13 (Tensor (diagonal) action of U(d)). For n > 1 and U € U(d) define the unitary
on (C4)&n
QU) :=U®".

Fact 1 (Representation property). @ : U(d) — U((Cd)®") is a unitary representation since
QUQ(V) =Usrven = (UV)*" = QUV).

Proposition 7 (Invariance of the symmetric subspace). Let Sym™(C%) c (C4)®" be the sym-
metric subspace. Then Q(U) Sym™(C?) C Sym™(C%) for every U € U(d).

Proof. By Theorem “product-state span = symmetric subspace”, every |¢) € Sym™(C%) can
be written as |1)) = 3, a; [0,)®". Then Q(U) |)) = 3, a;(U |v;))®", which is again a linear
combination of n-fold product states, hence symmetric. ]

Remark 4. The permutation representation P : S, — U((C%)®") acts trivially on Sym"(C?):
P(m) ) = |[¢) for all m € S, and |¢) € Sym™(CY).



Haar measure and Haar-random vectors

Definition 14 (Haar measure on U(d)). The (normalized) Haar measure piga,, is the unique
probability measure on U(d) that is invariant under left and right multiplication: paa(VUW) =
UHaar(U) for all fixed VW € U(d).

Fact 2 (Haar pushforward to the sphere). Fix any unit vector |v) € C% If U ~ fiaar, then
U |v) is a Haar-random unit vector (i.e., uniformly distributed on the complex unit sphere).
Conversely, a Haar-random unitary can be obtained by sampling d i.i.d. complex Gaussian
vectors, applying Gram—Schmidt, and stacking them as columns.

Theorem 5 (Haar moment on the symmetric projector). Let |v) be a Haar-random unit vector
in C% and
M = E| |v) (v]®" ]

Then M is a scalar multiple of the symmetrizer Ilgyy, = % > res, P(m), namely

1
M = — Hsym
(")

Proof. (i) Invariance under U(d). If U ~ ppaar, then U |v) is Haar-random; hence
UM U™ = E[(U |v)(v| UT)®"] = M.

Thus M lies in the commutant of Q(U(d)) = {U®"}.

(i) Support in the symmetric subspace. Each sample |v)(v|®" has range contained in
Sym"(C%); therefore so does M. Hence M acts as zero on the orthogonal complement of
Sym"(C%).

(tii) Proportionality to lsym. By Schur-Weyl duality (or by the fact that the only operators
on the irreducible U (d)-module Sym™(C%) commuting with all U®™ are scalars), the restriction
of M to Sym™(C?) is a scalar multiple of the identity there: M = ¢Ilsyy, for some ¢ > 0.

(iv) Determine ¢ by traces. Since Tr(|v)(v|®™) = 1, we have Tr(M) = 1. Also Tr(Ilsym) =

dim Sym™(C%) = (”+d Y. Therefore 1 = Tr(M) = ¢ (”jgilzl), giving ¢ = (”;ﬁl;l)_l. O
Ezample 13 (n = 2). Using Hgym = 5 (I + F) (with F the swap),

2 I+F
“U><U’®2] = mﬂsym = m,

the familiar second-moment identity.

4.1 Toy example: the n =1 case

Let |v) € C? be Haar random on the unit sphere and expand in the computational basis
) =% v |i) with 32, [vi|> = 1. Then

Effo) (o] =E | (Y veli) J(Do5 Gl) | = D Blow] i)

( J

Off-diagonals vanish. For any diagonal phase unitary D = diag(e™1, ..., e"%), D|v) is also
Haar—distributed, so

E[Ui@j] = E[(Cieivi)(eiwjf)j)] = Ci(eiiej)E[Uif)j] Vo, 9]'.

If i # j this forces E[v;v;] = 0.



Diagonals are all equal and sum to 1. By permutation invariance of the Haar measure,
E[|v3]?] is the same for all 4; write E[|v;|?] = o Taking expectations in 3, |v;|> = 1 yields

d
1=E [Zmp] ZEW — a:é.

=1

Combining these two facts,

ISHN

Bl () = 302 |

=1

5 A potential obstruction and irreducibility

5.1 A potential obstruction
Let |¢) = [1)®" and recall

M = Eyemaa] QU) 19){(¢] QU)'],  Q(U)=U®"

Suppose (hypothetically) that in some fixed basis every Q(U) had the same block—diagonal form

QU) = (QléU) Q;U) ) Then Q(U) would never mix the two invariant subspaces, and averaging
could not move a vector from one block into the other. In that case M could be at best a
projector onto one block, rather than a multiple of the full symmetrizer Ilgy,. This motivates
the need to show that no such nontrivial decomposition exists on the symmetric subspace, i.e.

the action is irreducible.

5.2 (Ir)reducible representations and examples

Definition 15 (Reducible / irreducible). A unitary representation (u, V) of a group G is
reducible if there is a nontrivial proper subspace 0 # W C V with pu(g)W C W for all g € G.
Otherwise it is irreducible. Equivalently, in some basis p(g) is block diagonal for all g.

Examples. (1) The permutation representation P : S, — U((C%)®") is reducible since it
preserves the symmetric subspace Sym™(C¢%). (2) The tensor action Q(U) = U®" on (C%)®" is
also reducible because it preserves Sym™(C%). (3) On Sym"(C%), the permutation action P(7)
is trivial (acts as the identity), hence “extremely” reducible.

5.3 Irreducibility of () on the symmetric subspace

Theorem 6. Let Q : U(d) — U(Sym™(C%)) be the restricted tensor action Q(U) = US™. Then
Q is irreducible on Sym"(C?).

Proof. We follow the sketch from the notes.
Assume for contradiction that @ is reducible. Then there are nonzero, proper, orthogonal
@Q-invariant subspaces X,Y C Sym"(C?%) with

Sym"(CH=XaoY, QU)XCX, QU)YCY VYU eU(d).

By the product-state span theorem (proved earlier), the set {|v)®" : |v) € C%} spans
Sym™(CY). Hence there exists a family of unit vectors {|v;)} and an index set I such that
|v;)®™ € X for all i € I, and (since Y # {0}) there is some j ¢ I with |v;)*" € Y.

Because U(d) acts transitively on unit vectors, there exists a unitary U € U(d) with
U |vj) = |vj,) for some iy € I. Then

Q) [vj)®" = (U [u;))®" = |vi)*" € X.



But [v;)®" € Y and Y is Q-invariant, so Q(U) |v;)*"™ € Y as well. Thus [v;,)®" € X NY, a
nonzero vector, contradicting X 1 Y and Sym™(C?%) = X @Y.

Therefore no such nontrivial invariant decomposition exists, and () is irreducible on Sym”(Cd).
O

5.4 Proof of the Haar moment theorem via irreducibility

Recall Theorem for |v) Haar-random, M = E[ |v)(v|*" ] = (”jﬁ;l)_lﬂsym.

Proof (representation—theoretic). For any fixed U € U(d), Haar invariance gives
Q)M Q)" =E[(U |v)(v|UT)*"] = M,

so M commutes with every Q(U) and acts trivially on the orthogonal complement of Sym". By
Theorem @ and Schur’s lemma(which we will show later), M = cIlgyy for some c. Taking traces,

1=Tr(M) =cTr(lsgym) = ¢ (”zgilzl), SO ¢ = ("55;1)71. O

6 Pure-state tomography via the Haar POVM

Problem. Given n copies of an unknown pure state |¢) € C¢, we perform one collective
measurement on [¢))®" and output an estimate [)). Our accuracy metric will be the (squared)
fidelity F := |(1[))]%.

Equivalence for pure states. For pure states,

D [9)0], [9)X1) = /1 = [(wld) 2.

Hence a fidelity target |(¢[i))[2 > 1 — &2 is exactly the trace-distance target Dy, < e.

Proposition 8 (Expected trace distance). Under the Haar POVM estimator ¢ = v,

d—1 d
<

n+d ~ n

E| Dullo)l, [0)d]) | < ¢ 1-E[|wih)] - V

(The inequality uses concavity of x — /1 — x and Theorem @)

Theorem 7 (Tail bound / error exponent in trace distance). Let F = |[(1)|))|2. Then F ~
Beta(n+1,d—1), so for any € € (0,1),

(n+d—1)d72 e_(n+1)82

Pr[Dy >e] =Pr[1-F >¢&*] =1, »2(n+l,d-1) < @=2) (ns1)

Thus the error probability decays at least like poly(n,d) e~ (D yith exponent (n+1)e2.

Proposition 9 (Samples for trace-distance target with tail < §). To ensure Pr[Dy, > €] <6, it
suffices to take
1

s (d—2) log(n+d—1)+log(m) o, O(M)

g2 g2

10



The Haar POVM on Sym"(C?%)

By Theorem , for Haar-random |v), E[jv)(v|®"] = (";rilzl)_lﬂsym. This implies that the
operator density

n+d—1 n
B = ("3 17T Wl avto), (W
with dv the normalized Haar measure on the unit sphere of C?, forms a valid POVM on Sym™(C%).
For input [1))®" the outcome law is
n+d—1 n
prfao [ ] = ("5 47 ) 1) o vt )
We use the simple estimator |¢)) := |v) (the outcome direction).

Proposition 10. For Haar-random |v) and any fized |1),

m+d—1

J_1 >_1 (m € N).

EHaar[<w|7Z’>2m} = <
Proof. By Theorem E[jv) (v|®™] = (m;r_d; 1)71H5ym. Taking the matrix element on i)™
gives the claim since Tgyp, [10)®" = [)©™. O

Theorem 8 (Expected fidelity). If we measure [1))®" with the Haar POVM and output
|¢h) = [v), then

no]  nt+l d—1
E[(WW ]_n—i—d_l n+d

Proof. From ({5,

s = (") [ aw = (T ()

using Lemma [10| with m = n + 1. The ratio simplifies to (n + 1)/(n + d). O

Full distribution and an error exponent

Let F := |(1)) ¢{2. Combining with the well-known fact that T := |(v) ¢|? is Beta(1,d—1)

under Haar measure, we find

(1 —¢)4-2
F ~ Beta(n+1, d—1) with density fp(t) = B(n(+ l,c)l 1 (t €10,1]),
where B is the beta function. In particular, for any ¢ € (0,1),
Pr[1-F>¢&| =1, 2(n+1,d-1), (6)

the regularized incomplete beta.
A convenient explicit upper bound (polynomial pre-factor with an ezponential rate) is

1
(n+1)B(n+1,d-1)

(n + d — 1)d_2 —(n+1)52‘

Pr[l1-F>¢&%] < d—2)(n+1)

(1 o 62)71—1-1 <

(7)
The first inequality integrates the density on [0,1 — £2] and the second uses (1 —z) < e~
and 1/B(n+1,d—1) < %. Thus, the error exponent is at least (n + 1)e? up to a
dimension—dependent polynomial pre-factor.

11



Why Beta, not just “a concentration bound”? Let T = |(v|¢))|?. For v ~ Haar on C%,
T ~ Beta(l,d — 1),

because |v1|? is the ratio of two independent I" variables (Dirichlet on the sphere). Under the
Haar POVM, the outcome density is tilted by 7" [Eq. (B])], so the posterior law of F := |(1)[¢)|?
is

F ~ Beta(n+1,d —1).

This one-dimensional reduction has three advantages:

1
1. Exact quantities. We get E[F| = nt
n

and, for any m, E[F™] = (m;fl_l)_l ezactly,

and the tail is the regularized incomplete beta:

Pril—F>&?| =1, o(n+1,d—1).

2. Sharp, dimension-aware tails. From the Beta form,

Pr[l— F >¢&?| = ! /1_€2t”(1 — )4 2at < (1-e)™
~ ' Bhn+l,d-1)), = B(n+1,d—1)

which yields the explicit error exponent e~ (n+1)e? up to a polynomial pre-factor in (n + d)
[cf. Eq. ] This captures the correct n—vs—d dependence with the best constants you

can hope for from this route.

3. No independence assumptions. Standard tools like Hoeffding/Bernstein apply to sums
of i.i.d. variables; here F is a single draw whose density already encodes n (via t"). Forcing
a generic concentration argument either does not apply directly or gives looser bounds.

Proposition 11. [Sample complexity with tail < §] For any 6 € (0,1), it suffices to take

(d—2)log(n+d—1)+ log(ﬁ)

g2 -1

n =

to guarantee Pr[1 — F > %] < 4. In coarse scaling, n = O((d + log(1/4))/€?).

7 Single-copy tomography with a Haar-random basis

Definition 16 (Haar-random basis). If U € U(d) is Haar-random and {|1),...,|d)} is a fixed
orthonormal basis, then { |u;) := U |i) }¢_, is a Haar-random basis.

Algorithm (incomplete single-copy tomography).
1. Draw a Haar-random basis {|u1),..., |ug)}.
2. Measure p in this basis; let the outcome be |u).

3. Output the estimator
p = (d+1)[u){ul - I.
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Haar-basis measurement equals the uniform POVM

[Symmetry of outcomes in a Haar basis] For a Haar-random basis {|u;)} and any state p,
Pr[outcome = |u1)] = - -+ = Pr[outcome = |ug)].
[Outcome density] Let |u) be any unit vector. Then

Prloutcome € dv(u) around |u)] =d Tr[|u)(u| p| dv(u),
where dv is the normalized Haar measure on the unit sphere of C.
Definition 17 (Uniform POVM). The uniform POVM on C¢ has operator density
E(du) = d |u){u| dv(u (so /E (du) =1).

Performing the Haar-basis measurement is equivalent to applying this POVM.

Unbiased single-copy estimator
Write Q(U) = U®2, F for SWAP, and Hgyma = (I + F). Using Theorem [5| with n = 2,

f‘u 'U/‘®2 dV( ) mﬂsym,g. Then

B[} ] :/|u><u| Prioutcome € du] :d/|u><u| Te[ Ju{u] p] dv(u)

—d T / ) (] dv () ) (T @ p) | = dil Trp [Mayma (I © p)]
= L [t P en)] = (T4 ).

d+1 d+1

Hence:

Theorem 9 (Unbiasedness). With the uniform POVM and estimator p = (d+1) |u){u| —
E[p] = p.

Second moment and a variance bound
For any outcome |u), in a basis with |u) first, the matrix of p is diag(d, —1,...,—1). Thus
Tr(p?) =d?> +(d—1)-1=d*+d—1 (independent of |u)).
Using E[p] = p,
E[I5 - pll3] = E[ Tr(5?) — 2 Tx(3p) + Tr(p?)]
— E[Tr(5%)] — Te(p?) < d+d—1.
Standard unentangled tomography (averaging n copies)

Run the single-copy procedure independently on n copies of p, obtaining p1, ..., p,, and output
D= %2221 Pk Then

d +d
Elllp - ollz] = — ZE [112% — pll3]

Using || A1 < y/rank(A) ||Allz < V/d||Al|2 gives the trace-distance guarantee

- 1 . 1 . 1/2 d3+d?—d
E[Du(7.p)] = 5 Ell7 — plh] < 5V (s - pl)"* </ =5 —

Hence n = ©(d*/?) samples suffice to achieve E[Dy,(p, p)] < e. (With independence, standard
scalar concentration upgrades this to n = O((d® + log(1/9))/e?) for tail < é.)
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