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Abstract

We review projection-valued measures (PVMs) and positive-operator-valued measures
(POVMs), clarify their relationship via Naimark’s dilation theorem, and collect useful state-
reconstruction formulas. For informationally complete POVMs we give the dual-frame linear
inversion (basis free) and the closed form for SIC-POVMs. For PVM-based tomography we
show how a tomographically complete set of projective bases (e.g. Pauli for qubits, MUBs
in prime-power dimensions) yields simple reconstruction. We also include convex physical
estimators (least-squares and maximum likelihood).

1 Preliminaries and notation

Let H ≃ Cd be a d-dimensional Hilbert space. Density operators are positive semidefinite (PSD)
ρ ⪰ 0 with Tr ρ = 1. We use the Hilbert–Schmidt inner product ⟨X,Y ⟩ = Tr

(
X†Y

)
on Herm(H).

2 Projective measurements (PVMs)

Definition 1 (PVM). A projection-valued measure (PVM) {Pi}i∈M on H satisfies Pi = P †
i ,

P 2
i = Pi, PiPj = δijPi, and

∑
i Pi = 1. Measuring ρ yields probabilities pi = Tr(Piρ) and

post-measurement state ρ′i =
PiρPi

Tr(Piρ)
.

For a single orthonormal basis {|ϕi⟩}, Pi = |ϕi⟩⟨ϕi|. A single PVM has at most d outcomes
and is generally not informationally complete (IC) for state tomography; IC requires enough
different projective settings (see §6).

2.1 Concrete PVM Examples

In each example, the Born rule is pi = Tr(Piρ) and the post-measurement state for outcome i is

ρ′i =
PiρPi
Tr(Piρ)

.

All families {Pi} below satisfy Pi = P †
i = P 2

i , PiPj = δijPi, and
∑

i Pi = 1.

2.2 Computational-basis PVM on a qudit

On H ∼= Cd with orthonormal basis {|j⟩}d−1
j=0 ,

Pj = |j⟩⟨j| , j = 0, . . . , d− 1,

d−1∑
j=0

Pj = 1.

For a pure state |ψ⟩ =
∑

j αj |j⟩, pj = |αj |2 and ρ′j = |j⟩⟨j|.
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2.2.1 Qubit Pauli PVMs

For L ∈ {X,Y, Z} with Pauli matrices σL, define

P
(L)
± =

1± σL
2

.

If ρ = 1
2(1+ r⃗ · σ⃗) with Bloch vector r⃗ = (rX , rY , rZ), then

p
(L)
± = Tr

(
P

(L)
± ρ

)
=

1± rL
2

, ρ′± = |±L⟩⟨±L| .

Explicitly,

σX =

(
0 1
1 0

)
, σY =

(
0 −i
i 0

)
, σZ =

(
1 0
0 −1

)
.

Are Pauli measurements a PVM? For a fixed Pauli observable L ∈ {X,Y, Z}, the two
effects

P
(L)
± = 1

2

(
I ± σL

)
form a PVM: P

(L)
± = P

(L)†
± , (P

(L)
± )2 = P

(L)
± , P

(L)
+ P

(L)
− = 0, and P

(L)
+ + P

(L)
− = I. However,

projectors from different Pauli settings are neither mutually orthogonal nor commuting in
general. For example,

P
(X)
+ P

(Z)
+ = 1

4(I + σX + σZ − i σY ) ̸= 0,

so the union over L ∈ {X,Y, Z} is not a single PVM.
It is common to aggregate the three settings into a single 6-outcome POVM by defining

E
(L)
± = 1

3 P
(L)
± ,

∑
L∈{X,Y,Z}

∑
±
E

(L)
± = I,

which is informationally complete for qubits. Tomographic inversion is then

rL = 6 p
(L)
+ − 1, ρ̂ = 1

2

I + ∑
L∈{X,Y,Z}

rL σL

 ,

where p
(L)
+ = Tr

(
E

(L)
+ ρ

)
.

2.2.2 Degenerate PVM: two-qubit parity

On H = (C2)⊗2, the parity observable Z⊗Z has eigenvalues ±1 with degeneracy 2. The PVM is

Peven = |00⟩⟨00|+ |11⟩⟨11| , Podd = |01⟩⟨01|+ |10⟩⟨10| .

This projects onto two-dimensional subspaces. The Lüders update preserves coherences within
the parity subspace: ρ 7→ PevenρPeven/peven or analogously for odd.

2.2.3 Total spin (singlet–triplet) PVM for two qubits

Equivalently, measure total angular momentum J2:∣∣ψ−〉 = 1√
2
(|01⟩ − |10⟩), Psing =

∣∣ψ−〉〈ψ−∣∣ ,∣∣ϕ±〉 = 1√
2
(|00⟩ ± |11⟩),

∣∣ψ+
〉
= 1√

2
(|01⟩+ |10⟩),

Ptrip =
∣∣ϕ+〉〈ϕ+∣∣+ ∣∣ϕ−〉〈ϕ−∣∣+ ∣∣ψ+

〉〈
ψ+

∣∣ .
This is a two-outcome PVM with ranks 1 and 3 (degenerate triplet).

2



2.2.4 Joint PVM for commuting observables

If A and B commute and have spectral decompositions A =
∑

a aΠa, B =
∑

b bΞb, then

{ΠaΞb }a,b

is a PVM (orthogonal projectors onto joint eigenspaces). Example on two qubits: measuring
Z ⊗ 1 and 1⊗ Z jointly yields {|00⟩⟨00| , |01⟩⟨01| , |10⟩⟨10| , |11⟩⟨11|}.

2.2.5 Fourier/DFT-basis PVM on a qudit

Let ω = e2πi/d and define |fk⟩ = 1√
d

∑d−1
j=0 ω

jk |j⟩, k = 0, . . . , d− 1. Then Qk = |fk⟩⟨fk| form a

PVM. For prime d, the computational-basis PVM {Pj} and the Fourier-basis PVM {Qk} are
mutually unbiased: |⟨j|fk⟩|2 = 1/d.

2.2.6 Bell-basis PVM (entangled basis)

On two qubits, the four Bell states {|ϕ±⟩ , |ψ±⟩} give a rank-1 PVM{
Πϕ+ ,Πϕ− ,Πψ+ ,Πψ−

}
, Πβ = |β⟩⟨β| .

This PVM is central in Bell tests and teleportation.

2.2.7 Continuous-spectrum example: position PVM

On H = L2(R), the position operator X has spectral measure {PΩ}Ω⊂R with

PΩ =

∫
Ω
|x⟩⟨x| dx,

∫
R
|x⟩⟨x| dx = 1.

For a wavefunction ψ(x), p(Ω) = Tr(PΩ ρ) =
∫
Ω |ψ(x)|2 dx. Updates follow the same Lüders rule

with projection onto L2(Ω).

3 Generalized measurements (POVMs)

Definition 2 (POVM). A POVM on a d-dimensional Hilbert space H is a finite (or countable)
family of positive semidefinite operators {Ej}j∈M such that

∑
j Ej = 1 (or I). Given a state ρ,

the probability of outcome j is
p(j | ρ) = Tr(Ejρ). (1)

POVMs strictly generalize PVMs and can model coarse-graining, noise, or collective projective
measurements on a larger space.

Post-measurement states and instruments. A POVM does not, by itself, fix the post-
measurement state; one must specify a quantum instrument {Mj}j , i.e. completely positive (CP)
maps with

∑
j Tr[Mj(ρ)] = 1 for all states. Every instrument admits a Kraus representation

Mj(ρ) =
∑
ℓ

Kj,ℓ ρK
†
j,ℓ, Ej =

∑
ℓ

K†
j,ℓKj,ℓ. (2)

Upon observing outcome j, the normalized posterior state is

ρ′j =
Mj(ρ)

Tr(Ejρ)
. (3)

Different choices of {Kj,ℓ} (same Ej) generally produce different post-measurement states.
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Square-root (Lüders-type) instrument. A canonical and often “least disturbing” choice is
the single-Kraus update

Mj(ρ) = E
1/2
j ρE

1/2
j , ρ′j =

E
1/2
j ρE

1/2
j

Tr(Ejρ)
. (4)

For PVMs (Ej are orthogonal projectors), (4) reduces to the usual Lüders projection PjρPj/p(j).

Naimark view. Any POVM can be realized as a projective measurement on a larger space:
there exist an ancilla K, a unit ancilla state |0⟩, a unitary U on H⊗K, and a PVM {Πj} on
H⊗K with

Ej = TrK
[
(1⊗|0⟩⟨0|)U †ΠjU (1⊗|0⟩⟨0|)

]
.

The corresponding posterior is the reduced state obtained from U(ρ⊗|0⟩⟨0|)U † conditioned on
Πj .

Remark 1. Thus, any POVM can be realized as a projective measurement on a larger system,
after coupling by U and discarding the ancilla. Rank-one POVMs arise from PVMs on minimal
dilations.

3.1 Examples of POVMs

(a) Unsharp two-outcome qubit measurement

Fix a Bloch direction n̂ and a sharpness parameter 0 ≤ η ≤ 1.

E± = 1
2

(
1± η n̂·σ⃗

)
, E+ + E− = 1, E± ⪰ 0.

For η = 1 this is the projective measurement along n̂; for η < 1 it models classical/quantum
noise. Square-root update uses (4) and preserves the symmetry about n̂.

(b) Trine POVM on a qubit (equatorial, 3 outcomes)

Let {|tk⟩}2k=0 be three pure states with Bloch vectors 120◦ apart in the xy-plane. Define
Ek = 2

3 |tk⟩⟨tk|. Then
∑

k Ek = 1 and the POVM has three outcomes. It is informationally
complete for states restricted to the equatorial plane, and is widely used in qubit discrimination
on a great circle.

(c) Tetrahedral SIC-POVM (qubit, 4 outcomes)

Let {|ψj⟩}4j=1 have Bloch vectors at the vertices of a regular tetrahedron. Set Ej =
1
2 |ψj⟩⟨ψj |.

The set is symmetric and informationally complete; given pj = Tr(Ejρ),

ρ =
4∑
j=1

(
3pj − 1

2

)
|ψj⟩⟨ψj | .

(See §4.1 for physical estimators with finite data.)

(d) Unambiguous discrimination of two nonorthogonal pure states

Let |ψ⟩ and |ϕ⟩ be linearly independent qubit (or qudit-plane) states with overlap c = |⟨ψ|ϕ⟩| ∈
(0, 1). Choose unit vectors |ψ⊥⟩, |ϕ⊥⟩ orthogonal to |ψ⟩ and |ϕ⟩ within span{ψ, ϕ}. For any
0 < α ≤ 1

1+c the three effects

Eψ = α |ϕ⊥⟩⟨ϕ⊥| , Eϕ = α |ψ⊥⟩⟨ψ⊥| , E? = 1− Eψ − Eϕ ⪰ 0

form a POVM with the property: Tr(Eψ |ϕ⟩⟨ϕ|) = 0 and Tr(Eϕ |ψ⟩⟨ψ|) = 0, so conclusive
outcomes never misidentify the state; E? is “inconclusive.” For equal priors, the optimal choice
of α yields success probability 1− c.
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(e) Coarse-graining / classical noise on a PVM

Starting from a two-outcome PVM {P0, P1}, a binary symmetric classical noise channel with
flip probability ε produces a POVM

F0 = (1− ε)P0 + εP1, F1 = εP0 + (1− ε)P1,

with F0 + F1 = 1 but Fi not idempotent unless ε ∈ {0, 1}.

(f) Continuous-variable example: heterodyne (coherent-state) POVM

On a single bosonic mode, the coherent states {|α⟩}α∈C resolve the identity:

1

π

∫
C
|α⟩⟨α| d2α = 1.

The heterodyne POVM has density E(α) = 1
π |α⟩⟨α|; the outcome distribution is the Husimi–Q

function Qρ(α) = Tr(E(α)ρ).
Note: In this part, we will talk about later in the Haar measurement.

Remark (IC POVMs for tomography). Examples (c) and the 6-outcome “Pauli-6” POVM

E
(L)
± = 1

3(1 ± σL)/2 (for L = X,Y, Z) are informationally complete on a qubit. Use the
linear/dual-frame or convex estimators from §4.1 to reconstruct ρ from empirical frequencies.

4 Informational completeness and linear inversion

A POVM {Ej}mj=1 is informationally complete (IC) if the real span of {Ej} is Herm(H) (dimension

d2). Then the linear map X 7→ (Tr(EjX))mj=1 is injective, and ρ is uniquely determined by
pj = Tr(Ejρ).

Define the frame operator S : Herm(H) → Herm(H),

S(X) =
m∑
j=1

Tr(EjX)Ej .

If {Ej} is IC, S is invertible. The canonical dual frame is Dj = S−1(Ej) and yields the basis-free
linear inversion

ρ =

m∑
j=1

pj Dj , pj = Tr(Ejρ). (5)

Equivalently, choose any Hilbert–Schmidt orthonormal operator basis {Bα}d
2−1
α=0 with B0 = 1/

√
d,

expand ρ =
∑

α rαBα, set Ajα = Tr(EjBα), and solve r = A+p (Moore–Penrose pseudoinverse).

4.1 Finite data and physical estimators

With N samples, frequencies fj = nj/N plugged into (5) give an unbiased but possibly non-PSD
ρ̂lin. Two standard convex fixes:

(Constrained LS) min
ρ⪰0, Tr ρ=1

∑
j

(
Tr(Ejρ)− fj

)2
,

(MLE) max
ρ⪰0, Tr ρ=1

∑
j

nj log Tr(Ejρ).
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5 Special IC measurements and closed forms

SIC-POVM. A symmetric informationally complete POVM consists of m = d2 rank-1 effects

Ej =
1
dΠj with Πj = |ψj⟩⟨ψj | and Tr(ΠjΠk) =

dδjk+1
d+1 . Then the inversion is closed form:

ρ =
d2∑
j=1

(
(d+ 1)pj −

1

d

)
Πj . (6)

Pauli-6 / Tetrahedron (qubit). For d = 2, the tetrahedral SIC has 4 outcomes {Πj}4j=1

and (6) becomes ρ =
∑

j(3pj −
1
2)Πj .

6 Reconstruction from PVMs

A single PVM is not IC for d > 1. However, a set of PVMs can be IC:

• Qubits. Measure the three Pauli PVMs Z,X, Y on three equally sized blocks of copies.

If p
(+)
L is the probability of the +1 outcome for L ∈ {X,Y, Z}, the Bloch vector is

rL = 2p
(+)
L − 1, and

ρ̂ = 1
2

(
1+ rXσX + rY σY + rZσZ

)
.

• MUBs (prime-power d). A complete set of d+1 mutually unbiased bases gives d(d+1)
outcomes arranged in d+ 1 PVMs and is IC. Linear inversion amounts to projecting onto
basis projectors and solving a full-rank linear system; MLE/LS as in §4.1.

7 Worked example (qubit, arbitrary IC POVM)

Let {Ej}mj=1 be IC on a qubit. Choose the Pauli basis B0 = 1/
√
2, Bk = σk/

√
2. Form

Ajα = Tr(EjBα) and solve r = A+f from frequencies f . Then

ρ̂lin = 1
2

(
1+

3∑
k=1

rkσk

)
,

followed by the PSD projection (LS or MLE) if needed.

8 Discussion

POVMs provide hardware-friendly, noise-robust measurements and allow elegant linear inversions
via dual frames; PVMs remain sufficient when combined into IC sets (Pauli, MUBs). In practice,
prefer convex physical estimators and, when possible, exploit symmetry (e.g. SIC) for variance
reduction.
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